
1
System Information

and Control

The system services described in this chapter operate on the system as a whole rather
than on individual objects within the system.They mostly gather information about
the performance and operation of the system and set system parameters.

ZwQuerySystemInformation

ZwQuerySystemInformation queries information about the system.
NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySystemInformation(

IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
IN OUT PVOID SystemInformation,
IN ULONG SystemInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

SystemInformationClass
The type of system information to be queried.The permitted values are a subset of
the enumeration SYSTEM_INFORMATION_CLASS, described in the following section.

SystemInformation
Points to a caller-allocated buffer or variable that receives the requested system
information.

SystemInformationLength
The size in bytes of SystemInformation, which the caller should set according to the
given SystemInformationClass.

1996 CH01 11/19/99 12:24 PM Page 1

System Information and Control: ZwQuerySystem Information2

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
SystemInformation; if SystemInformationLength is too small to contain the available
information, the variable is normally set to zero except for two information classes
(6 and 11) when it is set to the number of bytes required for the available information.
If this information is not needed, ReturnLength may be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_INFO_CLASS,
STATUS_NOT_IMPLEMENTED or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
GetSystemInfo, GetTimeZoneInformation, GetSystemTimeAdjustment, PSAPI functions,
and performance counters.

Remarks
ZwQuerySystemInformation is the source of much of the information displayed by
“Performance Monitor” for the classes Cache, Memory, Objects, Paging File, Process,
Processor, System, and Thread. It is also frequently used by resource kit utilities that
display information about the system.

The ReturnLength information is not always valid (depending on the information
class), even when the routine returns STATUS_SUCCESS.When the return value indicates
STATUS_INFO_LENGTH_MISMATCH, only some of the information classes return an estimate
of the required length.

Some information classes are implemented only in the “checked” version of the
kernel. Some, such as SystemCallCounts, return useful information only in “checked”
versions of the kernel.

Some information classes require certain flags to have been set in NtGlobalFlags at
boot time. For example, SystemObjectInformation requires that
FLG_MAINTAIN_OBJECT_TYPELIST be set at boot time.

Information class SystemNotImplemented1 (4) would return STATUS_NOT_IMPLEMENTED
if it were not for the fact that it uses DbgPrint to print the text “EX:
SystemPathInformation now available via SharedUserData.” and then calls
DbgBreakPoint.The breakpoint exception is caught by a frame based exception handler
(in the absence of intervention by a debugger) and causes ZwQuerySystemInformation
to return with STATUS_BREAKPOINT.

ZwSetSystemInformation

ZwSetSystemInformation sets information that affects the operation of the system.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetSystemInformation(

IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
IN OUT PVOID SystemInformation,

1996 CH01 11/19/99 12:24 PM Page 2

System Information and Control: SYSTEM_INFORMATION_CLASS 3

IN ULONG SystemInformationLength
);

Parameters

SystemInformationClass
The type of system information to be set.The permitted values are a subset of the
enumeration SYSTEM_INFORMATION_CLASS, described in the following section.

SystemInformation
Points to a caller-allocated buffer or variable that contains the system information to
be set.

SystemInformationLength
The size in bytes of SystemInformation, which the caller should set according to the
given SystemInformationClass.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_INFO_CLASS,
STATUS_NOT_IMPLEMENTED or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
SetSystemTimeAdjustment.

Remarks
At least one of the information classes uses the SystemInformation parameter for both
input and output.

SYSTEM_INFORMATION_CLASS

The system information classes available in the “free” (retail) build of the system are
listed below along with a remark as to whether the information class can be queried,
set, or both. Some of the information classes labeled “SystemNotImplementedXxx” are
implemented in the “checked” build, and a few of these classes are briefly described
later.

Query Set
typedef enum _SYSTEM_INFORMATION_CLASS {

SystemBasicInformation, // 0 Y N
SystemProcessorInformation, // 1 Y N
SystemPerformanceInformation, // 2 Y N
SystemTimeOfDayInformation, // 3 Y N
SystemNotImplemented1, // 4 Y N
SystemProcessesAndThreadsInformation, // 5 Y N
SystemCallCounts, // 6 Y N
SystemConfigurationInformation, // 7 Y N
SystemProcessorTimes, // 8 Y N
SystemGlobalFlag, // 9 Y Y
SystemNotImplemented2, // 10 Y N
SystemModuleInformation, // 11 Y N

1996 CH01 11/19/99 12:24 PM Page 3

System Information and Control: SYSTEM_INFORMATION_CLASS4

SystemLockInformation, // 12 Y N
SystemNotImplemented3, // 13 Y N
SystemNotImplemented4, // 14 Y N
SystemNotImplemented5, // 15 Y N
SystemHandleInformation, // 16 Y N
SystemObjectInformation, // 17 Y N
SystemPagefileInformation, // 18 Y N
SystemInstructionEmulationCounts, // 19 Y N
SystemInvalidInfoClass1, // 20
SystemCacheInformation, // 21 Y Y
SystemPoolTagInformation, // 22 Y N
SystemProcessorStatistics, // 23 Y N
SystemDpcInformation, // 24 Y Y
SystemNotImplemented6, // 25 Y N
SystemLoadImage, // 26 N Y
SystemUnloadImage, // 27 N Y
SystemTimeAdjustment, // 28 Y Y
SystemNotImplemented7, // 29 Y N
SystemNotImplemented8, // 30 Y N
SystemNotImplemented9, // 31 Y N
SystemCrashDumpInformation, // 32 Y N
SystemExceptionInformation, // 33 Y N
SystemCrashDumpStateInformation, // 34 Y Y/N
SystemKernelDebuggerInformation, // 35 Y N
SystemContextSwitchInformation, // 36 Y N
SystemRegistryQuotaInformation, // 37 Y Y
SystemLoadAndCallImage, // 38 N Y
SystemPrioritySeparation, // 39 N Y
SystemNotImplemented10, // 40 Y N
SystemNotImplemented11, // 41 Y N
SystemInvalidInfoClass2, // 42
SystemInvalidInfoClass3, // 43
SystemTimeZoneInformation, // 44 Y N
SystemLookasideInformation, // 45 Y N
SystemSetTimeSlipEvent, // 46 N Y
SystemCreateSession, // 47 N Y
SystemDeleteSession, // 48 N Y
SystemInvalidInfoClass4, // 49
SystemRangeStartInformation, // 50 Y N
SystemVerifierInformation, // 51 Y Y
SystemAddVerifier, // 52 N Y
SystemSessionProcessesInformation // 53 Y N

} SYSTEM_INFORMATION_CLASS;

SystemBasicInformation
typedef struct _SYSTEM_BASIC_INFORMATION { // Information Class 0

ULONG Unknown;
ULONG MaximumIncrement;
ULONG PhysicalPageSize;
ULONG NumberOfPhysicalPages;
ULONG LowestPhysicalPage;
ULONG HighestPhysicalPage;
ULONG AllocationGranularity;
ULONG LowestUserAddress;
ULONG HighestUserAddress;
ULONG ActiveProcessors;
UCHAR NumberProcessors;

} SYSTEM_BASIC_INFORMATION, *PSYSTEM_BASIC_INFORMATION;

1996 CH01 11/19/99 12:24 PM Page 4

System Information and Control: SystemBasicInformation 5

Members

Unknown
Always contains zero; interpretation unknown.

MaximumIncrement
The maximum number of 100-nanosecond units between clock ticks.Also the
number of 100-nanosecond units per clock tick for kernel intervals measured in clock
ticks.

PhysicalPageSize
The size in bytes of a physical page.

NumberOfPhysicalPages
The number of physical pages managed by the operating system.

LowestPhysicalPage
The number of the lowest physical page managed by the operating system (numbered
from zero).

HighestPhysicalPage
The number of the highest physical page managed by the operating system (numbered
from zero).

AllocationGranularity
The granularity to which the base address of virtual memory reservations is rounded.

LowestUserAddress
The lowest virtual address potentially available to user mode applications.

HighestUserAddress
The highest virtual address potentially available to user mode applications.

ActiveProcessors
A bit mask representing the set of active processors in the system. Bit 0 is processor 0;
bit 31 is processor 31.

NumberProcessors
The number of processors in the system.

Remarks
Much of the data in this information class can be obtained by calling the Win32 func-
tion GetSystemInfo.

1996 CH01 11/19/99 12:24 PM Page 5

System Information and Control: SystemProcessorInformation6

SystemProcessorInformation
typedef struct _SYSTEM_PROCESSOR_INFORMATION { // Information Class 1

USHORT ProcessorArchitecture;
USHORT ProcessorLevel;
USHORT ProcessorRevision;
USHORT Unknown;
ULONG FeatureBits;

} SYSTEM_PROCESSOR_INFORMATION, *PSYSTEM_PROCESSOR_INFORMATION;

Members

ProcessorArchitecture
The system’s processor architecture. Some of the possible values are defined in winnt.h
with identifiers of the form PROCESSOR_ARCHITECTURE_* (where ‘*’ is a wildcard).

ProcessorLevel
The system’s architecture-dependent processor level. Some of the possible values are
defined in the Win32 documentation for the SYSTEM_INFO structure.

ProcessorRevision
The system’s architecture-dependent processor revision. Some of the possible values are
defined in the Win32 documentation for the SYSTEM_INFO structure.

Unknown
Always contains zero; interpretation unknown.

FeatureBits
A bit mask representing any special features of the system’s processor (for example,
whether the Intel MMX instruction set is available).The flags for the Intel platform
include:

Intel Mnemonic Value Description

VME 0x0001 Virtual-8086 Mode Enhancements
TCS 0x0002 Time Stamp Counter

0x0004 CR4 Register
CMOV 0x0008 Conditional Mov/Cmp Instruction
PGE 0x0010 PTE Global Bit
PSE 0x0020 Page Size Extensions
MTRR 0x0040 Memory Type Range Registers
CXS 0x0080 CMPXCHGB8 Instruction
MMX 0x0100 MMX Technology
PAT 0x0400 Page Attribute Table
FXSR 0x0800 Fast Floating Point Save and Restore
SIMD 0x2000 Streaming SIMD Extension

Remarks
Much of the data in this information class can be obtained by calling the Win32
function GetSystemInfo.

1996 CH01 11/19/99 12:24 PM Page 6

System Information and Control: SystemPerformanceInformation 7

SystemPerformanceInformation
typedef struct _SYSTEM_PERFORMANCE_INFORMATION { // Information Class 2

LARGE_INTEGER IdleTime;
LARGE_INTEGER ReadTransferCount;
LARGE_INTEGER WriteTransferCount;
LARGE_INTEGER OtherTransferCount;
ULONG ReadOperationCount;
ULONG WriteOperationCount;
ULONG OtherOperationCount;
ULONG AvailablePages;
ULONG TotalCommittedPages;
ULONG TotalCommitLimit;
ULONG PeakCommitment;
ULONG PageFaults;
ULONG WriteCopyFaults;
ULONG TransitionFaults;
ULONG Reserved1;
ULONG DemandZeroFaults;
ULONG PagesRead;
ULONG PageReadIos;
ULONG Reserved2[2];
ULONG PagefilePagesWritten;
ULONG PagefilePageWriteIos;
ULONG MappedFilePagesWritten;
ULONG MappedFilePageWriteIos;
ULONG PagedPoolUsage;
ULONG NonPagedPoolUsage;
ULONG PagedPoolAllocs;
ULONG PagedPoolFrees;
ULONG NonPagedPoolAllocs;
ULONG NonPagedPoolFrees;
ULONG TotalFreeSystemPtes;
ULONG SystemCodePage;
ULONG TotalSystemDriverPages;
ULONG TotalSystemCodePages;
ULONG SmallNonPagedLookasideListAllocateHits;
ULONG SmallPagedLookasideListAllocateHits;
ULONG Reserved3;
ULONG MmSystemCachePage;
ULONG PagedPoolPage;
ULONG SystemDriverPage;
ULONG FastReadNoWait;
ULONG FastReadWait;
ULONG FastReadResourceMiss;
ULONG FastReadNotPossible;
ULONG FastMdlReadNoWait;
ULONG FastMdlReadWait;
ULONG FastMdlReadResourceMiss;
ULONG FastMdlReadNotPossible;
ULONG MapDataNoWait;
ULONG MapDataWait;
ULONG MapDataNoWaitMiss;
ULONG MapDataWaitMiss;
ULONG PinMappedDataCount;
ULONG PinReadNoWait;
ULONG PinReadWait;
ULONG PinReadNoWaitMiss;
ULONG PinReadWaitMiss;
ULONG CopyReadNoWait;
ULONG CopyReadWait;
ULONG CopyReadNoWaitMiss;

1996 CH01 11/19/99 12:24 PM Page 7

System Information and Control: SystemPerformanceInformation8

ULONG CopyReadWaitMiss;
ULONG MdlReadNoWait;
ULONG MdlReadWait;
ULONG MdlReadNoWaitMiss;
ULONG MdlReadWaitMiss;
ULONG ReadAheadIos;
ULONG LazyWriteIos;
ULONG LazyWritePages;
ULONG DataFlushes;
ULONG DataPages;
ULONG ContextSwitches;
ULONG FirstLevelTbFills;
ULONG SecondLevelTbFills;
ULONG SystemCalls;

} SYSTEM_PERFORMANCE_INFORMATION, *PSYSTEM_PERFORMANCE_INFORMATION;

Members

IdleTime
The total idle time, measured in units of 100-nanoseconds, of all the processors in the
system.

ReadTransferCount
The number of bytes read by all calls to ZwReadFile.

WriteTransferCount
The number of bytes written by all calls to ZwWriteFile.

OtherTransferCount
The number of bytes transferred to satisfy all other I/O operations, such as
ZwDeviceIoControlFile.

ReadOperationCount
The number of calls to ZwReadFile.

WriteOperationCount
The number of calls to ZwWriteFile.

OtherOperationCount
The number of calls to all other I/O system services such as ZwDeviceIoControlFile.

AvailablePages
The number of pages of physical memory available to processes running on the
system.

TotalCommittedPages
The number of pages of committed virtual memory.

TotalCommitLimit
The number of pages of virtual memory that could be committed without
extending the system’s pagefiles.

1996 CH01 11/19/99 12:24 PM Page 8

System Information and Control: SystemPerformanceInformation 9

PeakCommitment
The peak number of pages of committed virtual memory.

PageFaults
The number of page faults (both soft and hard).

WriteCopyFaults
The number of page faults arising from attempts to write to copy-on-write pages.

TransitionFaults
The number of soft page faults (excluding demand zero faults).

DemandZeroFaults
The number of demand zero faults.

PagesRead
The number of pages read from disk to resolve page faults.

PageReadIos
The number of read operations initiated to resolve page faults.

PagefilePagesWritten
The number of pages written to the system’s pagefiles.

PagefilePageWriteIos
The number of write operations performed on the system’s pagefiles.

MappedFilePagesWritten
The number of pages written to mapped files.

MappedFilePageWriteIos
The number of write operations performed on mapped files.

PagedPoolUsage
The number of pages of virtual memory used by the paged pool.

NonPagedPoolUsage
The number of pages of virtual memory used by the nonpaged pool.

PagedPoolAllocs
The number of allocations made from the paged pool.

PagedPoolFrees
The number of allocations returned to the paged pool.

NonPagedPoolAllocs
The number of allocations made from the nonpaged pool.

1996 CH01 11/19/99 12:24 PM Page 9

System Information and Control: SystemPerformanceInformation10

NonPagedPoolFrees
The number of allocations returned to the nonpaged pool.

TotalFreeSystemPtes
The number of available System Page Table Entries.

SystemCodePage
The number of pages of pageable operating system code and static data in physical
memory.The meaning of “operating system code and static data” is defined by address
range (lowest system address to start of system cache) and includes a contribution from
win32k.sys.

TotalSystemDriverPages
The number of pages of pageable device driver code and static data.

TotalSystemCodePages
The number of pages of pageable operating system code and static data.The meaning
of “operating system code and static data” is defined by load time (SERVICE_BOOT_START
driver or earlier) and does not include a contribution from win32k.sys.

SmallNonPagedLookasideListAllocateHits
The number of times an allocation could be satisfied by one of the small nonpaged
lookaside lists.

SmallPagedLookasideListAllocateHits
The number of times an allocation could be satisfied by one of the small-paged
lookaside lists.

MmSystemCachePage
The number of pages of the system cache in physical memory.

PagedPoolPage
The number of pages of paged pool in physical memory.

SystemDriverPage
The number of pages of pageable device driver code and static data in physical
memory.

FastReadNoWait
The number of asynchronous fast read operations.

FastReadWait
The number of synchronous fast read operations.

FastReadResourceMiss
The number of fast read operations not possible because of resource conflicts.

1996 CH01 11/19/99 12:24 PM Page 10

System Information and Control: SystemPerformanceInformation 11

FastReadNotPossible
The number of fast read operations not possible because file system intervention
required.

FastMdlReadNoWait
The number of asynchronous fast read operations requesting a Memory Descriptor
List (MDL) for the data.

FastMdlReadWait
The number of synchronous fast read operations requesting an MDL for the data.

FastMdlReadResourceMiss
The number of synchronous fast read operations requesting an MDL for the data not
possible because of resource conflicts.

FastMdlReadNotPossible
The number of synchronous fast read operations requesting an MDL for the data not
possible because file system intervention required.

MapDataNoWait
The number of asynchronous data map operations.

MapDataWait
The number of synchronous data map operations.

MapDataNoWaitMiss
The number of asynchronous data map operations that incurred page faults.

MapDataWaitMiss
The number of synchronous data map operations that incurred page faults.

PinMappedDataCount
The number of requests to pin mapped data.

PinReadNoWait
The number of asynchronous requests to pin mapped data.

PinReadWait
The number of synchronous requests to pin mapped data.

PinReadNoWaitMiss
The number of asynchronous requests to pin mapped data that incurred page faults
when pinning the data.

PinReadWaitMiss
The number of synchronous requests to pin mapped data that incurred page faults
when pinning the data.

1996 CH01 11/19/99 12:24 PM Page 11

System Information and Control: SystemPerformanceInformation12

CopyReadNoWait
The number of asynchronous copy read operations.

CopyReadWait
The number of synchronous copy read operations.

CopyReadNoWaitMiss
The number of asynchronous copy read operations that incurred page faults when
reading from the cache.

CopyReadWaitMiss
The number of synchronous copy read operations that incurred page faults when
reading from the cache.

MdlReadNoWait
The number of synchronous read operations requesting an MDL for the cached data.

MdlReadWait
The number of synchronous read operations requesting an MDL for the cached data.

MdlReadNoWaitMiss
The number of synchronous read operations requesting an MDL for the cached data
that incurred page faults.

MdlReadWaitMiss
The number of synchronous read operations requesting an MDL for the cached data
that incurred page faults.

ReadAheadIos
The number of read ahead operations performed in anticipation of sequential access.

LazyWriteIos
The number of write operations initiated by the Lazy Writer.

LazyWritePages
The number of pages written by the Lazy Writer.

DataFlushes
The number of cache flushes in response to flush requests.

DataPages
The number of cache pages flushed in response to flush requests.

ContextSwitches
The number of context switches.

FirstLevelTbFills
The number of first level translation buffer fills.

1996 CH01 11/19/99 12:24 PM Page 12

System Information and Control: SystemProcessesAndThreadsInformation 13

SecondLevelTbFills
The number of second level translation buffer fills.

SystemCalls
The number of system calls executed.

Remarks
Slightly longer descriptions of many of the members of this structure can be found in
the Win32 documentation for the NT Performance Counters.

SystemTimeOfDayInformation
typedef struct _SYSTEM_TIME_OF_DAY_INFORMATION { // Information Class 3

LARGE_INTEGER BootTime;
LARGE_INTEGER CurrentTime;
LARGE_INTEGER TimeZoneBias;
ULONG CurrentTimeZoneId;

} SYSTEM_TIME_OF_DAY_INFORMATION, *PSYSTEM_TIME_OF_DAY_INFORMATION;

Members

BootTime
The time when the system was booted in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

CurrentTime
The current time of day in the standard time format.

TimeZoneBias
The difference, in 100-nanosecond units, between Coordinated Universal Time (UTC)
and local time.

CurrentTimeZoneId
A numeric identifier for the current time zone.

Remarks
None.

SystemProcessesAndThreadsInformation
typedef struct _SYSTEM_PROCESSES { // Information Class 5

ULONG NextEntryDelta;
ULONG ThreadCount;
ULONG Reserved1[6];
LARGE_INTEGER CreateTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;
UNICODE_STRING ProcessName;
KPRIORITY BasePriority;
ULONG ProcessId;

1996 CH01 11/19/99 12:24 PM Page 13

System Information and Control: SystemProcessesAndThreadsInformation14

ULONG InheritedFromProcessId;
ULONG HandleCount;
ULONG Reserved2[2];
VM_COUNTERS VmCounters;
IO_COUNTERS IoCounters; // Windows 2000 only
SYSTEM_THREADS Threads[1];

} SYSTEM_PROCESSES, *PSYSTEM_PROCESSES;

typedef struct _SYSTEM_THREADS {
LARGE_INTEGER KernelTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER CreateTime;
ULONG WaitTime;
PVOID StartAddress;
CLIENT_ID ClientId;
KPRIORITY Priority;
KPRIORITY BasePriority;
ULONG ContextSwitchCount;
THREAD_STATE State;
KWAIT_REASON WaitReason;

} SYSTEM_THREADS, *PSYSTEM_THREADS;

Members

NextEntryDelta
The offset, from the start of this structure, to the next entry.A NextEntryDelta of zero
indicates that this is the last structure in the returned data.

ThreadCount
The number of threads in the process.

CreateTime
The creation time of the process in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

UserTime
The sum of the time spent executing in user mode by the threads of the process,
measured in units of 100-nanoseconds.

KernelTime
The sum of the time spent executing in kernel mode by the threads of the process,
measured in units of 100-nanoseconds.

ProcessName
The name of the process, normally derived from the name of the executable file used
to create the process.

BasePriority
The default base priority for the threads of the process.

ProcessId
The process identifier of the process.

1996 CH01 11/19/99 12:24 PM Page 14

System Information and Control: SystemProcessesAndThreadsInformation 15

InheritedFromProcessId
The process id of the process from which handles and/or address space was inherited.

HandleCount
The number of handles opened by the process.

VmCounters
Statistics on the virtual memory usage of the process. VM_COUNTERS is defined thus in
ntddk.h:

typedef struct _VM_COUNTERS {
ULONG PeakVirtualSize;
ULONG VirtualSize;
ULONG PageFaultCount;
ULONG PeakWorkingSetSize;
ULONG WorkingSetSize;
ULONG QuotaPeakPagedPoolUsage;
ULONG QuotaPagedPoolUsage;
ULONG QuotaPeakNonPagedPoolUsage;
ULONG QuotaNonPagedPoolUsage;
ULONG PagefileUsage;
ULONG PeakPagefileUsage;

} VM_COUNTERS, *PVM_COUNTERS;

IoCounters
Statistics on the I/O operations of the process.This information is only present in
Windows 2000. IO_COUNTERS is defined thus:

typedef struct _IO_COUNTERS {
LARGE_INTEGER ReadOperationCount;
LARGE_INTEGER WriteOperationCount;
LARGE_INTEGER OtherOperationCount;
LARGE_INTEGER ReadTransferCount;
LARGE_INTEGER WriteTransferCount;
LARGE_INTEGER OtherTransferCount;

} IO_COUNTERS, *PIO_COUNTERS;

Threads
An array of SYSTEM_THREADS structures describing the threads of the process.The num-
ber of elements in the array is available in the ThreadCount member.

The members of SYSTEM_THREADS aredescribed in the following secctions.

KernelTime
The time spent executing in kernel mode, measured in units of 100-nanoseconds.

UserTime
The time spent executing in user mode, measured in units of 100-nanoseconds.

CreateTime
The creation time of the thread in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

1996 CH01 11/19/99 12:24 PM Page 15

System Information and Control: SystemProcessesAndThreadsInformation16

WaitTime
The time at which the thread last entered a wait state, measured in clock ticks since
system boot.

StartAddress
The start address of the thread.

ClientId
The client identifier of the thread, comprising a process identifier and a thread
identifier.

Priority
The priority of the thread.

BasePriority
The base priority of the thread.

ContextSwitchCount
The number of context switches incurred by the thread.

State
The execution state of the thread. Permitted values are drawn from the enumeration
THREAD_STATE.

typedef enum {
StateInitialized,
StateReady,
StateRunning,
StateStandby,
StateTerminated,
StateWait,
StateTransition,
StateUnknown

} THREAD_STATE;

WaitReason
An indication of the reason for a wait. Some possible values are defined in the
enumeration KWAIT_REASON, but other values may also be used.

typedef enum _KWAIT_REASON {
Executive,
FreePage,
PageIn,
PoolAllocation,
DelayExecution,
Suspended,
UserRequest,
WrExecutive,
WrFreePage,
WrPageIn,
WrPoolAllocation,
WrDelayExecution,
WrSuspended,
WrUserRequest,
WrEventPair,

1996 CH01 11/19/99 12:24 PM Page 16

System Information and Control: SystemCallCounts 17

WrQueue,
WrLpcReceive,
WrLpcReply,
WrVirtualMemory,
WrPageOut,
WrRendezvous,
Spare2,
Spare3,
Spare4,
Spare5,
Spare6,
WrKernel

} KWAIT_REASON;

Remarks
The format of the data returned to the SystemInformation buffer is a sequence of
SYSTEM_PROCESSES structures, chained together via the NextEntryDelta member.
The Threads member of each SYSTEM_PROCESSES structure is an array of ThreadCount
SYSTEM_THREADS structures.The end of the process chain is marked by a NextEntryDelta
value of zero.

The Process Status API (PSAPI) function EnumProcesses uses this information class to
obtain a list of the process identifier in the system.

An demonstration of the use of this information class to implement a subset of the
Tool Help Library appears in Example 1.1.

The addition of the IoCounters member to SYSTEM_PROCESSES structure in Windows
2000 has the consequence that Windows NT 4.0 applications that access the Threads
member fail when run under Windows 2000; for example the pstat.exe resource kit
utility suffers from this problem.

SystemCallCounts
typedef struct _SYSTEM_CALLS_INFORMATION { // Information Class 6

ULONG Size;
ULONG NumberOfDescriptorTables;
ULONG NumberOfRoutinesInTable[1];
// ULONG CallCounts[];

} SYSTEM_CALLS_INFORMATION, *PSYSTEM_CALLS_INFORMATION;

Members

Size
The size in bytes of the returned information.

NumberOfDescriptorTables
The number of system service dispatch descriptor tables for which information is
available.

NumberOfRoutinesInTable
An array of the count of routines in each table.

1996 CH01 11/19/99 12:24 PM Page 17

System Information and Control: SystemCallCounts18

Remarks
Information on the number of calls to each system service is only gathered if the
“checked” version of the kernel is used and memory is allocated by the creator of the
table to hold the counts.

The counts of calls to each system service follow the array NumberOfRoutinesInTable.

SystemConfigurationInformation
typedef struct _SYSTEM_CONFIGURATION_INFORMATION { // Information Class 7

ULONG DiskCount;
ULONG FloppyCount;
ULONG CdRomCount;
ULONG TapeCount;
ULONG SerialCount;
ULONG ParallelCount;

} SYSTEM_CONFIGURATION_INFORMATION, *PSYSTEM_CONFIGURATION_INFORMATION;

Members

DiskCount
The number of hard disk drives in the system.

FloppyCount
The number of floppy disk drives in the system.

CdRomCount
The number of CD-ROM drives in the system.

TapeCount
The number of tape drives in the system.

SerialCount
The number of serial ports in the system.

ParallelCount
The number of parallel ports in the system.

Remarks
This information is a subset of the information available to device drivers by calling
IoGetConfigurationInformation.

SystemProcessorTimes
typedef struct _SYSTEM_PROCESSOR_TIMES { // Information Class 8

LARGE_INTEGER IdleTime;
LARGE_INTEGER KernelTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER DpcTime;

1996 CH01 11/19/99 12:24 PM Page 18

System Information and Control: SystemGlobalFlag 19

LARGE_INTEGER InterruptTime;
ULONG InterruptCount;

} SYSTEM_PROCESSOR_TIMES, *PSYSTEM_PROCESSOR_TIMES;

Members

IdleTime
The idle time, measured in units of 100-nanoseconds, of the processor.

KernelTime
The time the processor spent executing in kernel mode, measured in units of 100-
nanoseconds.

UserTime
The time the processor spent executing in user mode, measured in units of 100-
nanoseconds.

DpcTime
The time the processor spent executing deferred procedure calls, measured in units of
100-nanoseconds.

InterruptTime
The time the processor spent executing interrupt routines, measured in units of 100-
nanoseconds.

InterruptCount
The number of interrupts serviced by the processor.

Remarks
An array of structures is returned, one per processor.

SystemGlobalFlag
typedef struct _SYSTEM_GLOBAL_FLAG { // Information Class 9

ULONG GlobalFlag;
} SYSTEM_GLOBAL_FLAG, *PSYSTEM_GLOBAL_FLAG;

Members

GlobalFlag
A bit array of flags that control various aspects of the behavior of the kernel.

Remarks
This information class can be both queried and set. SeDebugPrivilege is required to set
the flags. Some flags are used only at boot time and subsequent changes have no effect.
Some flags have an effect only when using a “checked” kernel.

1996 CH01 11/19/99 12:24 PM Page 19

System Information and Control: SystemGlobalFlag20

The flags recognized by the “gflags” resource kit utility are:
FLG_STOP_ON_EXCEPTION 0x00000001
FLG_SHOW_LDR_SNAPS 0x00000002
FLG_DEBUG_INITIAL_COMMAND 0x00000004
FLG_STOP_ON_HUNG_GUI 0x00000008
FLG_HEAP_ENABLE_TAIL_CHECK 0x00000010
FLG_HEAP_ENABLE_FREE_CHECK 0x00000020
FLG_HEAP_VALIDATE_PARAMETERS 0x00000040
FLG_HEAP_VALIDATE_ALL 0x00000080
FLG_POOL_ENABLE_TAIL_CHECK 0x00000100
FLG_POOL_ENABLE_FREE_CHECK 0x00000200
FLG_POOL_ENABLE_TAGGING 0x00000400
FLG_HEAP_ENABLE_TAGGING 0x00000800
FLG_USER_STACK_TRACE_DB 0x00001000
FLG_KERNEL_STACK_TRACE_DB 0x00002000
FLG_MAINTAIN_OBJECT_TYPELIST 0x00004000
FLG_HEAP_ENABLE_TAG_BY_DLL 0x00008000
FLG_IGNORE_DEBUG_PRIV 0x00010000
FLG_ENABLE_CSRDEBUG 0x00020000
FLG_ENABLE_KDEBUG_SYMBOL_LOAD 0x00040000
FLG_DISABLE_PAGE_KERNEL_STACKS 0x00080000
FLG_HEAP_ENABLE_CALL_TRACING 0x00100000
FLG_HEAP_DISABLE_COALESCING 0x00200000
FLG_ENABLE_CLOSE_EXCEPTIONS 0x00400000
FLG_ENABLE_EXCEPTION_LOGGING 0x00800000
FLG_ENABLE_DBGPRINT_BUFFERING 0x08000000

SystemModuleInformation
typedef struct _SYSTEM_MODULE_INFORMATION { // Information Class 11

ULONG Reserved[2];
PVOID Base;
ULONG Size;
ULONG Flags;
USHORT Index;
USHORT Unknown;
USHORT LoadCount;
USHORT ModuleNameOffset;
CHAR ImageName[256];

} SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION;

Members

Base
The base address of the module.

Size
The size of the module.

Flags
A bit array of flags describing the state of the module.

Index
The index of the module in the array of modules.

1996 CH01 11/19/99 12:24 PM Page 20

System Information and Control: SystemLockInformation 21

Unknown
Normally contains zero; interpretation unknown.

LoadCount
The number of references to the module.

ModuleNameOffset
The offset to the final filename component of the image name.

ImageName
The filepath of the module.

Remarks
The data returned to the SystemInformation buffer is a ULONG count of the number of
modules followed immediately by an array of SYSTEM_MODULE_INFORMATION.

The system modules are the Portable Executable (PE) format files loaded into the
kernel address space (ntoskrnl.exe, hal.dll, device drivers, and so on) and ntdll.dll.

The PSAPI function EnumDeviceDrivers uses this information class to obtain a list of
the device drivers in the system. It is also used by the PSAPI functions
GetDeviceDriverFileName and GetDeviceDriverBaseName.

The code in Example 1.3 uses this information class.

SystemLockInformation
typedef struct _SYSTEM_LOCK_INFORMATION { // Information Class 12

PVOID Address;
USHORT Type;
USHORT Reserved1;
ULONG ExclusiveOwnerThreadId;
ULONG ActiveCount;
ULONG ContentionCount;
ULONG Reserved2[2];
ULONG NumberOfSharedWaiters;
ULONG NumberOfExclusiveWaiters;

} SYSTEM_LOCK_INFORMATION, *PSYSTEM_LOCK_INFORMATION;

Members

Address
The address of the ERESOURCE structure.

Type
The type of the lock.This is always RTL_RESOURCE_TYPE (1).

ExclusiveOwnerThreadId
The thread ID of the owner of the resource if the resource is owned exclusively, oth-
erwise zero.

1996 CH01 11/19/99 12:24 PM Page 21

System Information and Control: SystemLockInformation22

ActiveCount
The number of threads granted access to the resource.

ContentionCount
The number of times a thread had to wait for the resource.

NumberOfSharedWaiters
The number of threads waiting for shared access to the resource.

NumberOfExclusiveWaiters
The number of threads waiting for exclusive access to the resource.

Remarks
The data returned to the SystemInformation buffer is a ULONG count of the number of
locks followed immediately by an array of SYSTEM_LOCK_INFORMATION.

The locks reported on by this information class are only available to kernel mode
code.The locks support multiple reader single writer functionality and are known as
“resources.”They are initialized by the routine ExInitializeResourceLite and are doc-
umented in the DDK.

SystemHandleInformation
typedef struct _SYSTEM_HANDLE_INFORMATION { // Information Class 16

ULONG ProcessId;
UCHAR ObjectTypeNumber;
UCHAR Flags; // 0x01 = PROTECT_FROM_CLOSE, 0x02 = INHERIT
USHORT Handle;
PVOID Object;
ACCESS_MASK GrantedAccess;

} SYSTEM_HANDLE_INFORMATION, *PSYSTEM_HANDLE_INFORMATION;

Members

ProcessId
The process identifier of the owner of the handle.

ObjectTypeNumber
A number which identifies the type of object to which the handle refers.The number
can be translated to a name by using the information returned by ZwQueryObject.

Flags
A bit array of flags that specify properties of the handle.

Handle
The numeric value of the handle.

Object
The address of the kernel object to which the handle refers.

1996 CH01 11/19/99 12:24 PM Page 22

System Information and Control: SystemObjectInformation 23

GrantedAccess
The access to the object granted when the handle was created.

Remarks
The data returned to the SystemInformation buffer is a ULONG count of the number of
handles followed immediately by an array of SYSTEM_HANDLE_INFORMATION.

Examples of the use of this information class to implement utilities that list the open
handles of processes appear in Example 1.2 and Example 2.1 in Chapter 2,“Object
Directories, and Symbolic Links.”

SystemObjectInformation
typedef struct _SYSTEM_OBJECT_TYPE_INFORMATION { // Information Class 17

ULONG NextEntryOffset;
ULONG ObjectCount;
ULONG HandleCount;
ULONG TypeNumber;
ULONG InvalidAttributes;
GENERIC_MAPPING GenericMapping;
ACCESS_MASK ValidAccessMask;
POOL_TYPE PoolType;
UCHAR Unknown;
UNICODE_STRING Name;

} SYSTEM_OBJECT_TYPE_INFORMATION, *PSYSTEM_OBJECT_TYPE_INFORMATION;

typedef struct _SYSTEM_OBJECT_INFORMATION {
ULONG NextEntryOffset;
PVOID Object;
ULONG CreatorProcessId;
USHORT Unknown;
USHORT Flags;
ULONG PointerCount;
ULONG HandleCount;
ULONG PagedPoolUsage;
ULONG NonPagedPoolUsage;
ULONG ExclusiveProcessId;
PSECURITY_DESCRIPTOR SecurityDescriptor;
UNICODE_STRING Name;

} SYSTEM_OBJECT_INFORMATION, *PSYSTEM_OBJECT_INFORMATION;

Members

NextEntryOffset
The offset from the start of the SystemInformation buffer to the next entry.

ObjectCount
The number of objects of this type in the system.

HandleCount
The number of handles to objects of this type in the system.

TypeNumber
A number that identifies this object type.

1996 CH01 11/19/99 12:24 PM Page 23

System Information and Control: SystemObjectInformation24

InvalidAttributes
A bit mask of the OBJ_Xxx attributes that are not valid for objects of this type.The
defined attributes are:

OBJ_INHERIT
OBJ_PERMANENT
OBJ_EXCLUSIVE
OBJ_CASE_INSENSITIVE
OBJ_OPENIF
OBJ_OPENLINK
OBJ_KERNEL_HANDLE // Windows 2000 only

GenericMapping
The mapping of generic access rights to specific access rights for this object type.

ValidAccessMask
The valid specific access rights for this object type.

PoolType
The type of pool from which this object type is allocated (paged or nonpaged).

Unknown
Interpretation unknown.

Name
A name that identifies this object type.

The members of SYSTEM_OBJECT_INFORMATION are described in the following sections.

NextEntryOffset
The offset from the start of the SystemInformation buffer to the next entry.

Object
The address of the object.

CreatorProcessId
The process identifier of the creator of the object.

Unknown
Normally contains zero; interpretation unknown.

Flags
A bit array of flags that specify properties of the object. Observed values include:

SINGLE_HANDLE_ENTRY 0x40
DEFAULT_SECURITY_QUOTA 0x20
PERMANENT 0x10
EXCLUSIVE 0x08
CREATOR_INFO 0x04
KERNEL_MODE 0x02

PointerCount
The number of pointer references to the object.

1996 CH01 11/19/99 12:24 PM Page 24

System Information and Control: SystemPagefileInformation 25

HandleCount
The number of handle references to the object.

PagedPoolUsage
The amount of paged pool used by the object.

NonPagedPoolUsage
The amount of nonpaged pool used by the object.

ExclusiveProcessId
The process identifier of the owner of the object if it was created for exclusive use
(by specifying OBJ_EXCLUSIVE).

SecurityDescriptor
The security descriptor for the object.

Name
The name of the object.

Remarks
This information class is only available if FLG_MAINTAIN_OBJECT_TYPELIST was set in
NtGlobalFlags at boot time.

The format of the data returned to the SystemInformation buffer is a sequence of
SYSTEM_OBJECT_TYPE_INFORMATION structures, chained together via the NextEntryOffset
member. Immediately following the name of the object type is a sequence of
SYSTEM_OBJECT_INFORMATION structures, which are chained together via the
NextEntryOffset member.The ends of both the object type chain and the object chain
are marked by a NextEntryOffset value of zero.

The use of this information class to implement a utility that lists the open handles of
processes appears in Example 1.2.

SystemPagefileInformation
typedef struct _SYSTEM_PAGEFILE_INFORMATION { // Information Class 18

ULONG NextEntryOffset;
ULONG CurrentSize;
ULONG TotalUsed;
ULONG PeakUsed;
UNICODE_STRING FileName;

} SYSTEM_PAGEFILE_INFORMATION, *PSYSTEM_PAGEFILE_INFORMATION;

Members

NextEntryOffset
The offset from the start of the SystemInformation buffer to the next entry.

CurrentSize
The current size in pages of the page file.

1996 CH01 11/19/99 12:24 PM Page 25

System Information and Control: SystemPagefileInformation26

TotalUsed
The number of pages in the page file that are in use.

PeakUsed
The peak number of pages in the page file that have been in use.

FileName
The filepath of the page file.

Remarks
None.

SystemInstructionEmulationCounts
typedef struct _SYSTEM_INSTRUCTION_EMULATION_INFORMATION { // Info Class 19

ULONG SegmentNotPresent;
ULONG TwoByteOpcode;
ULONG ESprefix;
ULONG CSprefix;
ULONG SSprefix;
ULONG DSprefix;
ULONG FSPrefix;
ULONG GSprefix;
ULONG OPER32prefix;
ULONG ADDR32prefix;
ULONG INSB;
ULONG INSW;
ULONG OUTSB;
ULONG OUTSW;
ULONG PUSHFD;
ULONG POPFD;
ULONG INTnn;
ULONG INTO;
ULONG IRETD;
ULONG INBimm;
ULONG INWimm;
ULONG OUTBimm;
ULONG OUTWimm;
ULONG INB;
ULONG INW;
ULONG OUTB;
ULONG OUTW;
ULONG LOCKprefix;
ULONG REPNEprefix;
ULONG REPprefix;
ULONG HLT;
ULONG CLI;
ULONG STI;
ULONG GenericInvalidOpcode;

} SYSTEM_INSTRUCTION_EMULATION_INFORMATION,
*PSYSTEM_INSTRUCTION_EMULATION_INFORMATION;

Remarks
The members of this structure are the number of times that particular instructions had
to be emulated for virtual DOS machines.The prefix opcodes do not themselves
require emulation, but they may prefix an opcode that does require emulation.

1996 CH01 11/19/99 12:24 PM Page 26

System Information and Control: SystemPoolTagInformation 27

SystemCacheInformation
typedef struct _SYSTEM_CACHE_INFORMATION { // Information Class 21

ULONG SystemCacheWsSize;
ULONG SystemCacheWsPeakSize;
ULONG SystemCacheWsFaults;
ULONG SystemCacheWsMinimum;
ULONG SystemCacheWsMaximum;
ULONG TransitionSharedPages;
ULONG TransitionSharedPagesPeak;
ULONG Reserved[2];

} SYSTEM_CACHE_INFORMATION, *PSYSTEM_CACHE_INFORMATION;

Members

SystemCacheWsSize
The size in bytes of the system working set.

SystemCacheWsPeakSize
The peak size in bytes of the system working set.

SystemCacheWsFaults
The number of page faults incurred by the system working set.

SystemCacheWsMinimum
The minimum desirable size in pages of the system working set.

SystemCacheWsMaximum
The maximum desirable size in pages of the system working set.

TransitionSharedPages
The sum of the number of pages in the system working set and the number of shared
pages on the Standby list.This value is only valid in Windows 2000.

TransitionSharedPagesPeak
The peak number of shared pages on the Standby list.This value is only valid in
Windows 2000.

Remarks
This information class can be both queried and set.When setting, only the
SystemCacheWsMinimum and SystemCacheWsMaximum values are used.

SystemPoolTagInformation
typedef struct _SYSTEM_POOL_TAG_INFORMATION { // Information Class 22

CHAR Tag[4];
ULONG PagedPoolAllocs;
ULONG PagedPoolFrees;
ULONG PagedPoolUsage;
ULONG NonPagedPoolAllocs;

1996 CH01 11/19/99 12:24 PM Page 27

System Information and Control: SystemPoolTagInformation28

ULONG NonPagedPoolFrees;
ULONG NonPagedPoolUsage;

} SYSTEM_POOL_TAG_INFORMATION, *PSYSTEM_POOL_TAG_INFORMATION;

Members

Tag
The four character tag string identifying the contents of the pool allocation.

PagedPoolAllocs
The number of times a block was allocated from paged pool with this tag.

PagedPoolFrees
The number of times a block was deallocated to paged pool with this tag.

PagedPoolUsage
The number of bytes of paged pool used by blocks with this tag.

NonPagedPoolAllocs
The number of times a block was allocated from nonpaged pool with this tag.

NonPagedPoolFrees
The number of times a block was deallocated to nonpaged pool with this tag.

NonPagedPoolUsage
The number of bytes of nonpaged pool used by blocks with this tag.

Remarks
This information class is only available if FLG_POOL_ENABLE_TAGGING was set in
NtGlobalFlags at boot time.

The data returned to the SystemInformation buffer is a ULONG count of the number of
tags followed immediately by an array of SYSTEM_POOL_TAG_INFORMATION.

The data returned by this information class is displayed by the “poolmon” utility.

SystemProcessorStatistics
typedef struct _SYSTEM_PROCESSOR_STATISTICS { // Information Class 23

ULONG ContextSwitches;
ULONG DpcCount;
ULONG DpcRequestRate;
ULONG TimeIncrement;
ULONG DpcBypassCount;
ULONG ApcBypassCount;

} SYSTEM_PROCESSOR_STATISTICS, *PSYSTEM_PROCESSOR_STATISTICS;

Members

ContextSwitches
The number of context switches performed by the processor.

1996 CH01 11/19/99 12:24 PM Page 28

System Information and Control: SystemDpcInformation 29

DpcCount
The number of deferred procedure calls (DPC) that have been added to the processor’s
DPC queue.

DpcRequestRate
The number of DPCs that have been added to the processor’s DPC queue since the
last clock tick.

TimeIncrement
The number of 100-nanosecond units between ticks of the system clock.

DpcBypassCount
The number of DPC interrupts that have been avoided.

ApcBypassCount
The number of kernel APC interrupts that have been avoided.

Remarks
An array of structures is returned, one per processor.

The ReturnLength information is not set correctly (always contains zero).

SystemDpcInformation
typedef struct _SYSTEM_DPC_INFORMATION { // Information Class 24

ULONG Reserved;
ULONG MaximumDpcQueueDepth;
ULONG MinimumDpcRate;
ULONG AdjustDpcThreshold;
ULONG IdealDpcRate;

} SYSTEM_DPC_INFORMATION, *PSYSTEM_DPC_INFORMATION;

Members

MaximumDpcQueueDepth
The maximum depth that the DPC queue should attain. If this depth is exceeded and
no DPCs are active, a DPC interrupt is requested.

MinimumDpcRate
The minimum rate at which DPCs should be requested. If the current request rate is
lower and no DPCs are active, a DPC interrupt is requested.

AdjustDpcThreshold
A parameter that affects the interval between retuning of the DPC parameters.

IdealDpcRate
The ideal rate at which DPCs should be requested. If the current rate is higher, mea-
sures are taken to tune the DPC parameters (for example, by adjusting the maximum
DPC queue depth).

1996 CH01 11/19/99 12:24 PM Page 29

System Information and Control: SystemDpcInformation30

Remarks
This information class can be both queried and set. SeLoadDriverPrivilege is required
to set the values.

These parameters only affect MediumInportance and HighImportance DPCs.

The ReturnLength information is not set correctly (always contains zero).

SystemLoadImage
typedef struct _SYSTEM_LOAD_IMAGE { // Information Class 26

UNICODE_STRING ModuleName;
PVOID ModuleBase;
PVOID Unknown;
PVOID EntryPoint;
PVOID ExportDirectory;

} SYSTEM_LOAD_IMAGE, *PSYSTEM_LOAD_IMAGE;

Members

ModuleName
The full path in the native NT format of the module to load. Required on input.

ModuleBase
The base address of the module.Valid on output.

Unknown
Pointer to a data structure describing the loaded module.Valid on output.

EntryPoint
The address of the entry point of the module.Valid on output.

ExportDirectory
The address of the export directory of the module.Valid on output.

Remarks
This information class can only be set. Rather than setting any information (in a nar-
row sense of “setting”), it performs the operation of loading a module into the kernel
address space and returns information on the loaded module.

After loading the module, MmPageEntireDriver (documented in the DDK) is called to
make the entire module pageable.The module entry point is not called.

This information class is valid only when ZwSetSystemInformation is invoked from
kernel mode.

SystemUnloadImage
typedef struct _SYSTEM_UNLOAD_IMAGE { // Information Class 27

PVOID ModuleBase;
} SYSTEM_UNLOAD_IMAGE, *PSYSTEM_UNLOAD_IMAGE;

1996 CH01 11/19/99 12:24 PM Page 30

System Information and Control: SystemTimeAdjustment 31

Members

ModuleBase
The base of a module.

Remarks
This information class can only be set. Rather than setting any information (in a nar-
row sense of “setting”), it performs the operation of unloading a module from the
kernel address space.

Even if the module is a device driver, the DriverUnload routine is not called.

This information class is only valid when ZwSetSystemInformation is invoked from
kernel mode.

SystemTimeAdjustment
typedef struct _SYSTEM_QUERY_TIME_ADJUSTMENT { // Information Class 28

ULONG TimeAdjustment;
ULONG MaximumIncrement;
BOOLEAN TimeSynchronization;

} SYSTEM_QUERY_TIME_ADJUSTMENT, *PSYSTEM_QUERY_TIME_ADJUSTMENT;

typedef struct _SYSTEM_SET_TIME_ADJUSTMENT { // Information Class 28
ULONG TimeAdjustment;
BOOLEAN TimeSynchronization;

} SYSTEM_SET_TIME_ADJUSTMENT, *PSYSTEM_SET_TIME_ADJUSTMENT;

Members

TimeAdjustment
The number of 100-nanosecond units added to the time-of-day clock at each clock
tick, if time adjustment is enabled.

MaximumIncrement
The maximum number of 100-nanosecond units between clock ticks.Also the num-
ber of 100-nanosecond units per clock tick for kernel intervals measured in clock
ticks.

TimeSynchronization
A boolean specifying that time adjustment is enabled when true.

Remarks
This information class can be both queried and set. SeSystemtimePrivilege is required
to set the values.The structures for querying and setting values are different.

The ReturnLength information is not set correctly (always contains zero).

1996 CH01 11/19/99 12:24 PM Page 31

System Information and Control: SystemCrashDumpInformation32

SystemCrashDumpInformation
typedef struct _SYSTEM_CRASH_DUMP_INFORMATION { // Information Class 32

HANDLE CrashDumpSectionHandle;
HANDLE Unknown; // Windows 2000 only

} SYSTEM_CRASH_DUMP_INFORMATION, *PSYSTEM_CRASH_DUMP_INFORMATION;

Members

CrashDumpSectionHandle
A handle to the crash dump section.

Unknown
A handle to an unknown object.This information is only present in Windows 2000.

Remarks
If a crash dump section exists, a new handle to the section is created for the current
process and returned in CrashDumpSectionHandle; otherwise, CrashDumpSectionHandle
contains zero.

In Windows 2000, SeCreatePagefilePrivilege is required to query the values.

SystemExceptionInformation
typedef struct _SYSTEM_EXCEPTION_INFORMATION { // Information Class 33

ULONG AlignmentFixupCount;
ULONG ExceptionDispatchCount;
ULONG FloatingEmulationCount;
ULONG Reserved;

} SYSTEM_EXCEPTION_INFORMATION, *PSYSTEM_EXCEPTION_INFORMATION;

Members

AlignmentFixupCount
The numbers of times data alignment had to be fixed up since the system booted.

ExceptionDispatchCount
The number of exceptions dispatched since the system booted.

FloatingEmulationCount
The number of times floating point instructions had to be emulated since the system
booted.

Remarks
None.

1996 CH01 11/19/99 12:24 PM Page 32

System Information and Control: SystemContextSwitchInformation 33

SystemCrashDumpStateInformation
typedef struct _SYSTEM_CRASH_DUMP_STATE_INFORMATION { // Information Class 34

ULONG CrashDumpSectionExists;
ULONG Unknown; // Windows 2000 only

} SYSTEM_CRASH_DUMP_STATE_INFORMATION, *PSYSTEM_CRASH_DUMP_STATE_INFORMATION;

Members

CrashDumpSectionExists
A boolean indicating whether a crash dump section exists.

Unknown
Interpretation unknown.This information is only present in Windows 2000.

Remarks
In Windows 2000, this information class can also be set if SeCreatePagefilePrivilege
is enabled.

SystemKernelDebuggerInformation
typedef struct _SYSTEM_KERNEL_DEBUGGER_INFORMATION { // Information Class 35

BOOLEAN DebuggerEnabled;
BOOLEAN DebuggerNotPresent;

} SYSTEM_KERNEL_DEBUGGER_INFORMATION, *PSYSTEM_KERNEL_DEBUGGER_INFORMATION;

Members

DebuggerEnabled
A boolean indicating whether kernel debugging has been enabled or not.

DebuggerNotPresent
A boolean indicating whether contact with a remote debugger has been established
or not.

Remarks
None.

SystemContextSwitchInformation
typedef struct _SYSTEM_CONTEXT_SWITCH_INFORMATION { // Information Class 36

ULONG ContextSwitches;
ULONG ContextSwitchCounters[11];

} SYSTEM_CONTEXT_SWITCH_INFORMATION, *PSYSTEM_CONTEXT_SWITCH_INFORMATION;

Members

ContextSwitches
The number of context switches.

1996 CH01 11/19/99 12:24 PM Page 33

System Information and Control: SystemContextSwitchInformation34

ContextSwitchCounters
Normally contains zeroes; interpretation unknown.

Remarks
The resource kit utility “kernprof” claims to display the context switch counters (if the
“-x” option is specified), but it only expects nine ContextSwitchCounters rather than
eleven. It displays the information thus:

Context Switch Information
Find any processor 0
Find last processor 0
Idle any processor 0
Idle current processor 0
Idle last processor 0
Preempt any processor 0
Preempt current processor 0
Preempt last processor 0
Switch to idle 0

SystemRegistryQuotaInformation
typedef struct _SYSTEM_REGISTRY_QUOTA_INFORMATION { // Information Class 37

ULONG RegistryQuota;
ULONG RegistryQuotaInUse;
ULONG PagedPoolSize;

} SYSTEM_REGISTRY_QUOTA_INFORMATION, *PSYSTEM_REGISTRY_QUOTA_INFORMATION;

Members

RegistryQuota
The number of bytes of paged pool that the registry may use.

RegistryQuotaInUse
The number of bytes of paged pool that the registry is using.

PagedPoolSize
The size in bytes of the paged pool.

Remarks
This information class can be both queried and set. SeIncreaseQuotaPrivilege is
required to set the values.When setting, only the RegistryQuota value is used.

SystemLoadAndCallImage
typedef struct _SYSTEM_LOAD_AND_CALL_IMAGE { // Information Class 38

UNICODE_STRING ModuleName;
} SYSTEM_LOAD_AND_CALL_IMAGE, *PSYSTEM_LOAD_AND_CALL_IMAGE;

Members

ModuleName
The full path in the native NT format of the module to load.

1996 CH01 11/19/99 12:24 PM Page 34

System Information and Control: SystemTimeZoneInformation 35

Remarks
This information class can only be set. Rather than setting any information (in a nar-
row sense of “setting”), it performs the operation of loading a module into the kernel
address space and calling its entry point.

The entry point routine is expected to be a __stdcall routine taking two parameters
(consistent with the DriverEntry routine of device drivers); the call arguments are two
zeroes.

If the entry point routine returns a failure code, the module is unloaded.

Unlike ZwLoadDriver, which loads the module in the context of the system process,
ZwSetSystemInformation loads the module and invokes the entry point in the context
of the current process.

SystemPrioritySeparation
typedef struct _SYSTEM_PRIORITY_SEPARATION { // Information Class 39

ULONG PrioritySeparation;
} SYSTEM_PRIORITY_SEPARATION, *PSYSTEM_PRIORITY_SEPARATION;

Members

PrioritySeparation
A value that affects the scheduling quantum period of the foreground application. In
Windows NT 4.0, PrioritySeparation takes a value between zero and two (the higher
the value, the longer the quantum period). In Windows 2000, the low order six bits of
PrioritySeparation are used to configure the scheduling quantum.

Remarks
None.

SystemTimeZoneInformation
typedef struct _SYSTEM_TIME_ZONE_INFORMATION { // Information Class 44

LONG Bias;
WCHAR StandardName[32];
SYSTEMTIME StandardDate;
LONG StandardBias;
WCHAR DaylightName[32];
SYSTEMTIME DaylightDate;
LONG DaylightBias;

} SYSTEM_TIME_ZONE_INFORMATION, *PSYSTEM_TIME_ZONE_INFORMATION;

Members

Bias
The difference, in minutes, between Coordinated Universal Time (UTC) and local
time.

1996 CH01 11/19/99 12:24 PM Page 35

System Information and Control: SystemTimeZoneInformation36

StandardName
The name of the timezone when daylight saving time is not in effect.

StandardDate
A SYSTEMTIME structure specifying when daylight saving time ends.

StandardBias
The difference, in minutes, between UTC and local time when daylight saving time is
not in effect.

DaylightName
The name of the timezone when daylight saving time is in effect.

DaylightDate
A SYSTEMTIME structure specifying when daylight saving time starts.

DaylightBias
The difference, in minutes, between UTC and local time when daylight saving time is
in effect.

Remarks
This structure is identical to the TIME_ZONE_INFORMATION structure returned by the
Win32 function GetTimeZoneInformation.

SystemLookasideInformation
typedef struct _SYSTEM_LOOKASIDE_INFORMATION { // Information Class 45

USHORT Depth;
USHORT MaximumDepth;
ULONG TotalAllocates;
ULONG AllocateMisses;
ULONG TotalFrees;
ULONG FreeMisses;
POOL_TYPE Type;
ULONG Tag;
ULONG Size;

} SYSTEM_LOOKASIDE_INFORMATION, *PSYSTEM_LOOKASIDE_INFORMATION;

Members

Depth
The current depth of the lookaside list.

MaximumDepth
The maximum depth of the lookaside list.

TotalAllocates
The total number of allocations made from the list.

1996 CH01 11/19/99 12:24 PM Page 36

System Information and Control: SystemLookasideInformation 37

AllocateMisses
The number of times the lookaside list was empty and a normal allocation was
needed.

TotalFrees
The total number of allocations made from the list.

FreeMisses
The number of times the lookaside list was full and a normal deallocation was needed.

Type
The type of pool from which the memory for the lookaside list is allocated. Possible
values are drawn from the enumeration POOL_TYPE:

typedef enum _POOL_TYPE {
NonPagedPool,
PagedPool,
NonPagedPoolMustSucceed,
DontUseThisType,
NonPagedPoolCacheAligned,
PagedPoolCacheAligned,
NonPagedPoolCacheAlignedMustS,
MaxPoolType
NonPagedPoolSession = 32,
PagedPoolSession,
NonPagedPoolMustSucceedSession,
DontUseThisTypeSession,
NonPagedPoolCacheAlignedSession,
PagedPoolCacheAlignedSession,
NonPagedPoolCacheAlignedMustSSession

} POOL_TYPE;

Tag
The tag identifying allocations from the lookaside list

Size
The size of the blocks on the lookaside list.

Remarks
An array of structures are returned, one per lookaside list.The number of structures
can be obtained by dividing the ReturnLength by the size of the structure.

The lookaside lists reported on by this information class are only available to kernel
mode code.Their purpose is to speed the allocation and deallocation of blocks of
memory from paged and nonpaged pool.A nonpaged lookaside list is initialized by the
routine ExInitializeNPagedLookasideList.

Lookaside lists are documented in the DDK.

1996 CH01 11/19/99 12:24 PM Page 37

System Information and Control: SystemSetTimeSlipEvent38

SystemSetTimeSlipEvent
typedef struct _SYSTEM_SET_TIME_SLIP_EVENT { // Information Class 46

HANDLE TimeSlipEvent;
} SYSTEM_SET_TIME_SLIP_EVENT, *PSYSTEM_SET_TIME_SLIP_EVENT;

Members

TimeSlipEvent
A handle to an event object.The handle must grant EVENT_MODIFY_STATE access.

Remarks
This information class can only be set. SeSystemtimePrivilege is required to set the
value.The TimeSlipEvent will be signalled when the kernel debugger has caused time
to slip by blocking the system clock interrupt.

SystemCreateSession
typedef struct _SYSTEM_CREATE_SESSION { // Information Class 47

ULONG SessionId;
} SYSTEM_CREATE_SESSION, *PSYSTEM_CREATE_SESSION;

Members

SessionId
An identifier for the session.Valid on output.

Remarks
This information class can only be set. It creates a Windows Terminal Server session
and assigns the session an identifier.This information class is valid only when
Windows Terminal Server is running. In all other cases the return status is
STATUS_INVALID_SYSTEM_SERVICE.

SystemDeleteSession
typedef struct _SYSTEM_DELETE_SESSION { // Information Class 48

ULONG SessionId;
} SYSTEM_DELETE_SESSION, *PSYSTEM_DELETE_SESSION;

Members

SessionId
An identifier for the session

Remarks
This information class can only be set.This information class is valid only when
Windows Terminal Server is running. In all other cases the return status is
STATUS_INVALID_SYSTEM_SERVICE.

1996 CH01 11/19/99 12:24 PM Page 38

System Information and Control: SystemSessionProcessesInformation 39

SystemRangeStartInformation
typedef struct _SYSTEM_RANGE_START_INFORMATION { // Information Class 50

PVOID SystemRangeStart;
} SYSTEM_RANGE_START_INFORMATION, *PSYSTEM_RANGE_START_INFORMATION;

Members

SystemRangeStart
The base address of the system (kernel) portion of the virtual address space.

Remarks
None.

SystemVerifierInformation

Format unknown.

Remarks
This information class can be both queried and set. SeDebugPrivilege is required to set
the values.

This information class queries and sets information maintained by the device driver
verifier.The “Driver Verifier” is described in the DDK documentation.

SystemAddVerifier

Format unknown.

Remarks
This information class is only valid when ZwSetSystemInformation is invoked from
kernel mode.

This information class configures the device driver verifier.The “Driver Verifier” is
described in the DDK documentation.

SystemSessionProcessesInformation
typedef struct _SYSTEM_SESSION_PROCESSES_INFORMATION { // Information Class 53

ULONG SessionId;
ULONG BufferSize;
PVOID Buffer;

} SYSTEM_SESSION_PROCESSES_INFORMATION, *PSYSTEM_SESSION_PROCESSES_INFORMATION;

1996 CH01 11/19/99 12:24 PM Page 39

System Information and Control: SystemSessionProcessesInformation40

Members

SessionId
The SessionId for which to retrieve a list of processes and threads.

BufferSize
The size in bytes of the buffer in which to return the list of processes and threads.

Buffer
Points to a caller-allocated buffer or variable that receives the list of processes and
threads.

Remarks
Unlike other information classes, this information class uses the SystemInformation
argument of ZwQuerySystemInformation as an input buffer.

The information returned is in the same format as that returned by
SystemProcessesAndThreadsInformation, but contains information only on the
processes in the specified session.

The following information classes are only available in “checked” versions of the
kernel.

SystemPoolBlocksInformation
typedef struct _SYSTEM_POOL_BLOCKS_INFORMATION { // Info Classes 14 and 15

ULONG PoolSize;
PVOID PoolBase;
USHORT Unknown;
ULONG NumberOfBlocks;
SYSTEM_POOL_BLOCK PoolBlocks[1];

} SYSTEM_POOL_BLOCKS_INFORMATION, *PSYSTEM_POOL_BLOCKS_INFORMATION;

typedef struct _SYSTEM_POOL_BLOCK {
BOOLEAN Allocated;
USHORT Unknown;
ULONG Size;
CHAR Tag[4];

} SYSTEM_POOL_BLOCK, *PSYSTEM_POOL_BLOCK;

Members

PoolSize
The size in bytes of the pool.

PoolBase
The base address of the pool.

Unknown
The alignment of the pool; interpretation uncertain.

1996 CH01 11/19/99 12:24 PM Page 40

System Information and Control: SystemMemoryUsageInformation 41

NumberOfBlocks
The number of blocks in the pool.

PoolBlocks
An array of SYSTEM_POOL_BLOCK structures describing the blocks in the pool.The num-
ber of elements in the array is available in the NumberOfBlocks member.

The members of SYSTEM_POOL_BLOCK aredescribed in the following section.

Allocated
A boolean indicating whether this is an allocated or free block.

Unknown
Interpretation unknown.

Size
The size in bytes of the block.

Tag
The four character tag string identifying the contents of the pool allocation.

Remarks
Information class 14 returns data on the paged pool and information class 15 returns
data on the nonpaged pool.

The paged and nonpaged pools reported on by these information classes are only
available to kernel mode code. Blocks are allocated from paged and nonpaged pool by
the routines ExAllocatePoolXxx.The use of pool memory is documented in the DDK.

SystemMemoryUsageInformation
typedef struct _SYSTEM_MEMORY_USAGE_INFORMATION { // Info Classes 25 and 29

ULONG Reserved;
PVOID EndOfData;
SYSTEM_MEMORY_USAGE MemoryUsage[1];

} SYSTEM_MEMORY_USAGE_INFORMATION, *PSYSTEM_MEMORY_USAGE_INFORMATION;

typedef struct _SYSTEM_MEMORY_USAGE {
PVOID Name;
USHORT Valid;
USHORT Standby;
USHORT Modified;
USHORT PageTables;

} SYSTEM_MEMORY_USAGE, *PSYSTEM_MEMORY_USAGE;

1996 CH01 11/19/99 12:24 PM Page 41

System Information and Control: SystemMemoryUsageInformation42

Members

EndOfData
A pointer to the end of the valid data in the SystemInformation buffer.

MemoryUsage
An array of SYSTEM_MEMORY_USAGE structures describing the usage of physical memory.
The number of elements in the array is deducible from the EndOfData member.

The members of SYSTEM_MEMORY_USAGE are described in the following sections.

Name
The name of the object using the memory.This can be either a Unicode or ANSI
string.

Valid
The number of valid pages used by the object. If the object is a process, this is the
number of valid private pages.

Standby
The number of pages recently used by the object, that are now on the Standby list.

Modified
The number of pages recently used by the object which are now on the Modified list.

PageTables
The number of pagetable pages used by the object.The only objects that use pageta-
bles are processes. On an Intel platform using large (4-MByte) pages, the pagetables are
charged against nonpaged pool rather than processes.

Remarks
Information class 29 does not provide the information on the pages in the Standby
and Modified lists.

There is no indication of whether the name is a Unicode or ANSI string other than
the string data itself (for example, if every second byte is zero, the string must be
Unicode).

Information class 25 is able to account for the use of almost all the physical memory
in the system.The difference between sum of the Valid, Standby and Modified pages
and the NumberOfPhysicalPages (returned by the SystemBasicInformation class) is nor-
mally close to the number of pages on the Free and Zeroed memory lists.

Example 1.1: A Partial ToolHelp Library Implementation
#include “ntdll.h”
#include <tlhelp32.h>
#include <stdio.h>

struct ENTRIES {
ULONG Offset;

1996 CH01 11/19/99 12:24 PM Page 42

System Information and Control: Example 1.1: A Partial ToolHelp Library Implementation 43

ULONG Count;
ULONG Index;
ENTRIES() : Offset(0), Count(0), Index(0) {}
ENTRIES(ULONG m, ULONG n) : Offset(m), Count(n), Index(0) {}

};

enum EntryType {
ProcessType,
ThreadType,
MaxType

};

NT::PSYSTEM_PROCESSES GetProcessesAndThreads()
{

ULONG n = 0x100;
NT::PSYSTEM_PROCESSES sp = new NT::SYSTEM_PROCESSES[n];

while (NT::ZwQuerySystemInformation(
NT::SystemProcessesAndThreadsInformation,
sp, n * sizeof *sp, 0)

== STATUS_INFO_LENGTH_MISMATCH)
delete [] sp, sp = new NT::SYSTEM_PROCESSES[n = n * 2];

return sp;
}

ULONG ProcessCount(NT::PSYSTEM_PROCESSES sp)
{

ULONG n = 0;

bool done = false;

for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta))
n++, done = p->NextEntryDelta == 0;

return n;
}

ULONG ThreadCount(NT::PSYSTEM_PROCESSES sp)
{

ULONG n = 0;

bool done = false;

for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta))
n += p->ThreadCount, done = p->NextEntryDelta == 0;

return n;
}

VOID AddProcesses(PPROCESSENTRY32 pe, NT::PSYSTEM_PROCESSES sp)
{

bool done = false;

for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta)) {

pe->dwSize = sizeof *pe;
pe->cntUsage = 0;
pe->th32ProcessID = p->ProcessId;

1996 CH01 11/19/99 12:24 PM Page 43

System Information and Control: Example 1.1: A Partial ToolHelp Library Implementation44

pe->th32DefaultHeapID = 0;
pe->th32ModuleID = 0;
pe->cntThreads = p->ThreadCount;
pe->th32ParentProcessID = p->InheritedFromProcessId;
pe->pcPriClassBase = p->BasePriority;
pe->dwFlags = 0;
sprintf(pe->szExeFile, “%.*ls”,

p->ProcessName.Length / 2, p->ProcessName.Buffer);

pe++;

done = p->NextEntryDelta == 0;
}

}

VOID AddThreads(PTHREADENTRY32 te, NT::PSYSTEM_PROCESSES sp)
{

bool done = false;

for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta)) {

for (ULONG i = 0; i < p->ThreadCount; i++) {

te->dwSize = sizeof *te;
te->cntUsage = 0;
te->th32ThreadID = DWORD(p->Threads[i].ClientId.UniqueThread);
te->th32OwnerProcessID = p->ProcessId;
te->tpBasePri = p->Threads[i].BasePriority;
te->tpDeltaPri = p->Threads[i].Priority

- p->Threads[i].BasePriority;
te->dwFlags = 0;

te++;
}

done = p->NextEntryDelta == 0;
}

}

template<class T>
BOOL GetEntry(HANDLE hSnapshot, T entry, bool first, EntryType type)
{

ENTRIES *entries = (ENTRIES*)MapViewOfFile(hSnapshot, FILE_MAP_WRITE,
0, 0, 0);

if (entries == 0) return FALSE;

BOOL rv = TRUE;

entries[type].Index = first ? 0 : entries[type].Index + 1;

if (entries[type].Index >= entries[type].Count)
SetLastError(ERROR_NO_MORE_FILES), rv = FALSE;

if (entry->dwSize < sizeof *entry)
SetLastError(ERROR_INSUFFICIENT_BUFFER), rv = FALSE;

if (rv)
*entry = T(PCHAR(entries)+entries[type].Offset)[entries[type].Index];

UnmapViewOfFile(entries);

return rv;
}

1996 CH01 11/19/99 12:24 PM Page 44

System Information and Control: Example 1.1: A Partial ToolHelp Library Implementation 45

HANDLE
WINAPI
CreateToolhelp32Snapshot(DWORD flags, DWORD)
{

NT::PSYSTEM_PROCESSES sp =
(flags & (TH32CS_SNAPPROCESS | TH32CS_SNAPTHREAD))

? GetProcessesAndThreads() : 0;

ENTRIES entries[MaxType];
ULONG n = sizeof entries;

if (flags & TH32CS_SNAPPROCESS) {
entries[ProcessType] = ENTRIES(n, ProcessCount(sp));
n += entries[ProcessType].Count * sizeof (PROCESSENTRY32);

}
if (flags & TH32CS_SNAPTHREAD) {

entries[ThreadType] = ENTRIES(n, ThreadCount(sp));
n += entries[ThreadType].Count * sizeof (THREADENTRY32);

}

SECURITY_ATTRIBUTES sa = {sizeof sa, 0, (flags & TH32CS_INHERIT) != 0};

HANDLE hMap = CreateFileMapping(HANDLE(0xFFFFFFFF), &sa,
PAGE_READWRITE | SEC_COMMIT, 0, n, 0);

ENTRIES *p = (ENTRIES*)MapViewOfFile(hMap, FILE_MAP_WRITE, 0, 0, 0);

for (int i = 0; i < MaxType; i++) p[i] = entries[i];

if (flags & TH32CS_SNAPPROCESS)
AddProcesses(PPROCESSENTRY32(PCHAR(p) + entries[ProcessType].Offset),

sp);
if (flags & TH32CS_SNAPTHREAD)

AddThreads(PTHREADENTRY32(PCHAR(p) + entries[ThreadType].Offset),
sp);

UnmapViewOfFile(p);

if (sp) delete [] sp;

return hMap;
}

BOOL
WINAPI
Thread32First(HANDLE hSnapshot, PTHREADENTRY32 te)
{

return GetEntry(hSnapshot, te, true, ThreadType);
}

BOOL
WINAPI
Thread32Next(HANDLE hSnapshot, PTHREADENTRY32 te)
{

return GetEntry(hSnapshot, te, false, ThreadType);
}

BOOL
WINAPI
Process32First(HANDLE hSnapshot, PPROCESSENTRY32 pe)
{

return GetEntry(hSnapshot, pe, true, ProcessType);
}

1996 CH01 11/19/99 12:24 PM Page 45

System Information and Control: Example 1.1: A Partial ToolHelp Library Implementation46

BOOL
WINAPI
Process32Next(HANDLE hSnapshot, PPROCESSENTRY32 pe)
{

return GetEntry(hSnapshot, pe, false, ProcessType);
}

ZwQuerySystemInformation with an information class of
SystemProcessesAndThreadsInformation returns a superset of the information
concerning processes and threads that is available via the ToolHelp library (if it were
implemented in Windows NT 4.0). Example 1.1 uses this information class to imple-
ment a subset of the ToolHelp library; the remaining functions of the ToolHelp library
are addressed in later chapters.

The Win32 function CreateToolhelp32Snapshot returns a handle to a snapshot of the
processes and threads (and modules and heaps) in the system.The Win32 documenta-
tion states that this handle (and the snapshot itself) is freed by calling CloseHandle.
ZwQuerySystemInformation also returns a “snapshot,” but this snapshot is just data in a
caller-supplied buffer.To implement the documented behavior of
CreateToolhelp32Snapshot, it is necessary to encapsulate the information returned by
ZwQuerySystemInformation in a kernel object so that CloseHandle can free it.

The only suitable kernel object is a section object (known as a file mapping object by
Win32).The idea is to create a paging-file backed section object and then map a view
of this section into the address space so that the information returned from
ZwQuerySystemInformation can be copied to it.The view is then unmapped so that
closing the section handle will free the snapshot (mapped views prevent the section
object from being deleted).

The routines that return information from the snapshot must then just map the sec-
tion, copy the relevant data to the caller-supplied buffer, and unmap the section.

Example 1.2: Listing Open Handles of a Process
#include “ntdll.h”
#include <stdlib.h>
#include <stdio.h>
#include <vector>
#include <map>

#pragma warning(disable:4786) // identifier was truncated in the debug info

struct OBJECTS_AND_TYPES {
std::map<ULONG, NT::PSYSTEM_OBJECT_TYPE_INFORMATION, std::less<ULONG> >

types;
std::map<PVOID, NT::PSYSTEM_OBJECT_INFORMATION, std::less<PVOID> >

objects;
};

std::vector<NT::SYSTEM_HANDLE_INFORMATION> GetHandles()
{

ULONG n;
PULONG p = new ULONG[n = 0x100];

while (NT::ZwQuerySystemInformation(NT::SystemHandleInformation,
p, n * sizeof *p, 0)

1996 CH01 11/19/99 12:24 PM Page 46

System Information and Control: Example 1.2: Listing Open Handles of a Process 47

== STATUS_INFO_LENGTH_MISMATCH)

delete [] p, p = new ULONG[n *= 2];

NT::PSYSTEM_HANDLE_INFORMATION h = NT::PSYSTEM_HANDLE_INFORMATION(p + 1);

return std::vector<NT::SYSTEM_HANDLE_INFORMATION>(h, h + *p);
}

OBJECTS_AND_TYPES GetObjectsAndTypes()
{

ULONG n;
PCHAR p = new CHAR[n = 0x1000];

while (NT::ZwQuerySystemInformation(NT::SystemObjectInformation,
p, n * sizeof *p, 0)

== STATUS_INFO_LENGTH_MISMATCH)

delete [] p, p = new CHAR[n *= 2];

OBJECTS_AND_TYPES oats;

for (NT::PSYSTEM_OBJECT_TYPE_INFORMATION
t = NT::PSYSTEM_OBJECT_TYPE_INFORMATION(p); ;
t = NT::PSYSTEM_OBJECT_TYPE_INFORMATION(p + t->NextEntryOffset)) {

oats.types[t->TypeNumber] = t;

for (NT::PSYSTEM_OBJECT_INFORMATION
o = NT::PSYSTEM_OBJECT_INFORMATION(PCHAR(t->Name.Buffer)

+ t->Name.MaximumLength); ;
o = NT::PSYSTEM_OBJECT_INFORMATION(p + o->NextEntryOffset)) {

oats.objects[o->Object] = o;

if (o->NextEntryOffset == 0) break;
}
if (t->NextEntryOffset == 0) break;

}

return oats;
}

int main(int argc, char *argv[])
{

if (argc == 1) return 0;

ULONG pid = strtoul(argv[1], 0, 0);

OBJECTS_AND_TYPES oats = GetObjectsAndTypes();

std::vector<NT::SYSTEM_HANDLE_INFORMATION> handles = GetHandles();

NT::SYSTEM_OBJECT_INFORMATION defobj = {0};

printf(“Object Hnd Access Fl Atr #H #P Type Name\n”);

for (std::vector<NT::SYSTEM_HANDLE_INFORMATION>::iterator
h = handles.begin(); h != handles.end(); h++) {

if (h->ProcessId == pid) {

NT::PSYSTEM_OBJECT_TYPE_INFORMATION

1996 CH01 11/19/99 12:24 PM Page 47

System Information and Control: Example 1.2: Listing Open Handles of a Process48

t = oats.types[h->ObjectTypeNumber];
NT::PSYSTEM_OBJECT_INFORMATION

o = oats.objects[h->Object];

if (o == 0) o = &defobj;

printf(“%p %04hx %6lx %2x %3hx %3ld %4ld %-14.*S %.*S\n”,
h->Object, h->Handle, h->GrantedAccess, int(h->Flags),
o->Flags, o->HandleCount, o->PointerCount,
t->Name.Length, t->Name.Buffer,
o->Name.Length, o->Name.Buffer);

}
}
return 0;

}

Example 1.2 assumes that the NtGlobalFlag FLG_MAINTAIN_OBJECT_TYPELIST was set at
boot time.An alternative method of obtaining a list of open handles using a combina-
tion of ZwQuerySystemInformation and ZwQueryObject appearsin Chapter 2,“Objects,
Object Directories, and Symbolic Links,” in Example 2.1.

The program uses the address of the kernel object to which a handle refers to corre-
late the information returned by the information classes SystemHandleInformation and
SystemObjectInformation; a Standard Template Library (STL)map is used for this
purpose.

The list of handles in the system is scanned for handles owned by a particular process
id, and then information about the handle and the object to which it refers is dis-
played.

ZwQuerySystemEnvironmentValue

ZwQuerySystemEnvironmentValue queries the value of a system environment variable
stored in the non-volatile (CMOS) memory of the system.
NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySystemEnvironmentValue(

IN PUNICODE_STRING Name,
OUT PVOID Value,
IN ULONG ValueLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

Name
The name of system environment value to be queried.

Value
Points to a caller-allocated buffer or variable that receives the requested system
environment value.

ValueLength
The size in bytes of Value.

1996 CH01 11/19/99 12:24 PM Page 48

System Information and Control: ZwSetSystemEnvironmentValue 49

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
Value. If ValueLength is too small to contain the available data, the variable is set to the
number of bytes required for the available data. If this information is not needed by
the caller, ReturnLength may be specified as a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_BUFFER_OVERFLOW, or STATUS_UNSUCCESSFUL.

Related Win32 Functions
None.

Remarks
SeSystemEnvironmentPrivilege is required to query system environment values.

The information returned in Buffer is an array of WCHAR.The ReturnLength value con-
tains the length of the string in bytes.

ZwQuerySystemEnvironmentValue queries environment values stored in CMOS.The
standard Hardware Abstraction Layer (HAL) for the Intel platform only supports one
environment value,“LastKnownGood,” which takes the values “TRUE” and “FALSE.” It is
queried by writing 0xb to port 0x70 and reading from port 0x71.A value of zero is
interpreted as “FALSE,” other values as “TRUE.”

ZwSetSystemEnvironmentValue

ZwSetSystemEnvironmentValue sets the value of a system environment variable stored in
the non-volatile (CMOS) memory of the system.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetSystemEnvironmentValue(

IN PUNICODE_STRING Name,
IN PUNICODE_STRING Value
);

Parameters

Name
The name of system environment value to be set.

Value
The value to be set.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD or
STATUS_UNSUCCESSFUL.

1996 CH01 11/19/99 12:24 PM Page 49

System Information and Control: ZwSetSystemEnvironmentValue50

Related Win32 Functions
None.

Remarks
SeSystemEnvironmentPrivilege is required to set system environment values.

ZwSetSystemEnvironmentValue sets environment values stored in CMOS.The standard
HAL for the Intel platform only supports one environment value,“LastKnownGood,”
which takes the values “TRUE” and “FALSE.” It is set by writing 0xb to port 0x70 and
writing 0 (for “FALSE”) or 1 (for “TRUE”) to port 0x71.

ZwShutdownSystem

ZwShutdownSystem shuts down the system.
NTSYSAPI
NTSTATUS
NTAPI
ZwShutdownSystem(

IN SHUTDOWN_ACTION Action
);

Parameters

Action
The action to be performed after shutdown. Permitted values are drawn from the
enumeration SHUTDOWN_ACTION.
typedef enum _SHUTDOWN_ACTION {

ShutdownNoReboot,
ShutdownReboot,
ShutdownPowerOff

} SHUTDOWN_ACTION;

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions
ExitWindows(Ex), InitiateSystemShutdown.

Remarks
SeShutdownPrivilege is required to shut down the system.

User-mode applications and services are not informed of the shutdown (drivers of
devices that have registered for shutdown notification by calling
IoRegisterShutdownNotification are informed).

The system must have hardware support for power-off if the power-off action is to be
used successfully.

1996 CH01 11/19/99 12:24 PM Page 50

System Information and Control: ZwSystemDebugControl 51

ZwSystemDebugControl

ZwSystemDebugControl performs a subset of the operations available to a kernel mode
debugger.
NTSYSAPI
NTSTATUS
NTAPI
ZwSystemDebugControl(

IN DEBUG_CONTROL_CODE ControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

ControlCode
The control code for operation to be performed. Permitted values are drawn from the
enumeration DEBUG_CONTROL_CODE.
typedef enum _DEBUG_CONTROL_CODE {

DebugGetTraceInformation = 1,
DebugSetInternalBreakpoint,
DebugSetSpecialCall,
DebugClearSpecialCalls,
DebugQuerySpecialCalls,
DebugDbgBreakPoint

} DEBUG_CONTROL_CODE;

InputBuffer
Points to a caller-allocated buffer or variable that contains the data required to perform
the operation. This parameter can be null if the ControlCode parameter specifies an
operation that does not require input data.

InputBufferLength
The size in bytes of InputBuffer.

OutputBuffer
Points to a caller-allocated buffer or variable that receives the operation’s output data.
This parameter can be null if the ControlCode parameter specifies an operation that
does not produce output data.

OutputBufferLength
The size in bytes of OutputBuffer.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
OutputBuffer. If this information is not needed, ReturnLength may be a null pointer.

1996 CH01 11/19/99 12:24 PM Page 51

System Information and Control: ZwSystemDebugControl52

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_INVALID_INFO_CLASS or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
None.

Remarks
SeDebugPrivilege is required to use ZwSystemDebugControl in Windows 2000.

ZwSystemDebugControl allows a process to perform a subset of the functions available to
a kernel mode debugger.

The system should be booted from a configuration that has the boot.ini “/DEBUG” (or
equivalent) option enabled; otherwise a kernel debugger variable needed for the cor-
rect operation of internal breakpoints is not initialized.

The data structures used by ZwSystemDebugControl are defined in windbgkd.h (includ-
ed with the Platform SDK).An up-to-date copy of this file is needed to compile the
code in Examples 1.3 and 1.4. One of the structures used by ZwSystemDebugControl
includes a union that has grown over time, and ZwSystemDebugControl checks that the
input/output buffers are large enough to hold the largest member of the union.

DebugGetTraceInformation
typedef struct _DBGKD_GET_INTERNAL_BREAKPOINT { // DebugGetTraceInformation

DWORD_PTR BreakpointAddress;
DWORD Flags;
DWORD Calls;
DWORD MaxCallsPerPeriod;
DWORD MinInstructions;
DWORD MaxInstructions;
DWORD TotalInstructions;

} DBGKD_GET_INTERNAL_BREAKPOINT, *PDBGKD_GET_INTERNAL_BREAKPOINT;

#define DBGKD_INTERNAL_BP_FLAG_COUNTONLY 0x01 // don’t count instructions
#define DBGKD_INTERNAL_BP_FLAG_INVALID 0x02 // disabled BP
#define DBGKD_INTERNAL_BP_FLAG_SUSPENDED 0x04 // temporarily suspended
#define DBGKD_INTERNAL_BP_FLAG_DYING 0x08 // kill on exit

DebugGetTraceInformation does not require an InputBuffer and returns an array of
DBGKD_GET_INTERNAL_BREAKPOINT structures in the output buffer, one for each of the
internal breakpoints set.

Instruction counting counts the instructions from the breakpoint until the return from
the routine containing the breakpoint. Ideally, the breakpoint should be placed at the
beginning of a routine.The user mode debugger (windbg, cdb, ntsd) command “wt”
performs user mode instruction counting.

If instruction counting is enabled, MinInstructions contains the minimum number of
instructions encountered when executing the routine, MaxInstructions contains the
maximum, and TotalInstructions contains the total number of instructions executed
by all invocations of the routine (since the breakpoint was inserted).

Calls is the number of times the breakpoint has been encountered.

1996 CH01 11/19/99 12:24 PM Page 52

System Information and Control: ZwSystemDebugControl 53

Flags indicates whether instruction counting is enabled and whether the breakpoint
has been suspended.

DebugSetInternalBreakpoint
typedef struct _DBGKD_MANIPULATE_STATE {

DWORD ApiNumber;
WORD ProcessorLevel;
WORD Processor;
DWORD ReturnStatus;
union {

DBGKD_READ_MEMORY ReadMemory;
DBGKD_WRITE_MEMORY WriteMemory;
DBGKD_READ_MEMORY64 ReadMemory64;
DBGKD_WRITE_MEMORY64 WriteMemory64;
DBGKD_GET_CONTEXT GetContext;
DBGKD_SET_CONTEXT SetContext;
DBGKD_WRITE_BREAKPOINT WriteBreakPoint;
DBGKD_RESTORE_BREAKPOINT RestoreBreakPoint;
DBGKD_CONTINUE Continue;
DBGKD_CONTINUE2 Continue2;
DBGKD_READ_WRITE_IO ReadWriteIo;
DBGKD_READ_WRITE_IO_EXTENDED ReadWriteIoExtended;
DBGKD_QUERY_SPECIAL_CALLS QuerySpecialCalls;
DBGKD_SET_SPECIAL_CALL SetSpecialCall;
DBGKD_SET_INTERNAL_BREAKPOINT SetInternalBreakpoint;
DBGKD_GET_INTERNAL_BREAKPOINT GetInternalBreakpoint;
DBGKD_GET_VERSION GetVersion;
DBGKD_BREAKPOINTEX BreakPointEx;
DBGKD_PAGEIN PageIn;
DBGKD_READ_WRITE_MSR ReadWriteMsr;

} u;
} DBGKD_MANIPULATE_STATE, *PDBGKD_MANIPULATE_STATE;

typedef struct _DBGKD_SET_INTERNAL_BREAKPOINT { // DebugSetInternalBreakpoint
DWORD_PTR BreakpointAddress;
DWORD Flags;

} DBGKD_SET_INTERNAL_BREAKPOINT, *PDBGKD_SET_INTERNAL_BREAKPOINT;

DebugSetInternalBreakpoint does not require an OutputBuffer and expects the
InputBuffer to point to a DBGKD_MANIPULATE_STATE structure.The only values in this
structure that are required are the two values in the DBGKD_SET_INTERNAL_BREAKPOINT
structure. InputBufferLength is the size of the DBGKD_MANIPULATE_STATE structure.

BreakpointAddress is the address of the breakpoint. If a breakpoint already exists at this
address, the Flags are used to manipulate the breakpoint, otherwise a new breakpoint
is established. Breakpoints are deleted by setting the DBGKD_INTERNAL_BP_FLAG_INVALID
flag and are temporarily suspended by setting the DBGKD_INTERNAL_BP_FLAG_SUSPENDED
flag.The counting or non-counting nature of the breakpoint can be controlled by
setting or clearing the DBGKD_INTERNAL_BP_FLAG_COUNTONLY flag.

Breakpoints can be set at any address, but if the address is not at the start of an instruc-
tion then an STATUS_ILLEGAL_INSTRUCTION exception may be raised resulting in a sys-
tem crash.The intention is that breakpoints should be set at the start of routines but,
particularly if instruction counting is disabled, this is not essential.

1996 CH01 11/19/99 12:24 PM Page 53

System Information and Control: ZwSystemDebugControl54

DebugSetSpecialCall
typedef struct _DBGKD_SET_SPECIAL_CALL { // DebugSetSpecialCall

DWORD SpecialCall;
} DBGKD_SET_SPECIAL_CALL, *PDBGKD_SET_SPECIAL_CALL;

DebugSetSpecialCall does not require an OutputBuffer and expects the InputBuffer
to point to a DBGKD_MANIPULATE_STATE structure.The only value in this structure that is
required is the value in the DBGKD_SET_SPECIAL_CALL structure. InputBufferLength must
be four rather than the size of the DBGKD_MANIPULATE_STATE structure—this is a bug.

“Special Calls” are routines that should be treated specially when counting the instruc-
tions executed by some routine.The special calls set by the kernel debugger are:
HAL!@KfLowerIrql@4
HAL!@KfReleaseSpinLock@8
HAL!@HalRequestSoftwareInterrupt@4
NTOSKRNL!SwapContext
NTOSKRNL!@KiUnlockDispatcherDatabase@4

Whether the members of this list are necessary or sufficient to ensure correct opera-
tion of the instruction counting feature is difficult to say.

DebugClearSpecialCalls
DebugClearSpecialCalls requires neither an InputBuffer nor an OutputBuffer. It clears
the list of special calls.

DebugQuerySpecialCalls
typedef struct _DBGKD_QUERY_SPECIAL_CALLS { // DebugQuerySpecialCalls

DWORD NumberOfSpecialCalls;
// DWORD SpecialCalls[];

} DBGKD_QUERY_SPECIAL_CALLS, *PDBGKD_QUERY_SPECIAL_CALLS;

DebugQuerySpecialCalls does not require an InputBuffer and expects the OutputBuffer
to point to a buffer large enough to hold a DBGKD_MANIPULATE_STATE structure and an
array of DWORDs, one per special call. It returns a list of the special calls.

DebugDbgBreakPoint
DebugDbgBreakPoint requires neither an InputBuffer nor an OutputBuffer. If the kernel
debugger is enabled it causes a kernel mode debug break point to be executed.This
debug control code is only valid in Windows 2000.

The code in Examples 1.3 and 1.4 demonstrates how to set internal breakpoints and
get trace information.

Example 1.3: Setting an Internal Breakpoint
#include “ntdll.h”
#include “windbgkd.h”
#include <imagehlp.h>
#include <stdlib.h>

void LoadModules()
{

ULONG n;
NT::ZwQuerySystemInformation(NT::SystemModuleInformation,

&n, 0, &n);

1996 CH01 11/19/99 12:24 PM Page 54

System Information and Control: Example 1.3: Setting an Internal Breakpoint 55

PULONG p = new ULONG[n];
NT::ZwQuerySystemInformation(NT::SystemModuleInformation,

p, n * sizeof *p, 0);

NT::PSYSTEM_MODULE_INFORMATION module
= NT::PSYSTEM_MODULE_INFORMATION(p + 1);

for (ULONG i = 0; i < *p; i++)
SymLoadModule(0, 0, module[i].ImageName,

module[i].ImageName + module[i].ModuleNameOffset,
ULONG(module[i].Base), module[i].Size);

delete [] p;
}

DWORD GetAddress(PSTR expr)
{

PCHAR s;
ULONG n = strtoul(expr, &s, 16);

if (*s == 0) return n;

IMAGEHLP_SYMBOL symbol;

symbol.SizeOfStruct = sizeof symbol;
symbol.MaxNameLength = sizeof symbol.Name;

return SymGetSymFromName(0, expr, &symbol) == TRUE ? symbol.Address : 0;
}

void SetSpecialCall(DWORD addr)
{

DBGKD_MANIPULATE_STATE op = {0};
op.u.SetSpecialCall.SpecialCall = addr;

NT::ZwSystemDebugControl(NT::DebugSetSpecialCall, &op, 4, 0, 0, 0);
}

void SetSpecialCalls()
{

DBGKD_MANIPULATE_STATE op[4];

NT::ZwSystemDebugControl(NT::DebugQuerySpecialCalls,
0, 0, op, sizeof op, 0);

if (op[0].u.QuerySpecialCalls.NumberOfSpecialCalls == 0) {
SetSpecialCall(GetAddress(“HAL!KfLowerIrql”));
SetSpecialCall(GetAddress(“HAL!KfReleaseSpinLock”));
SetSpecialCall(GetAddress(“HAL!HalRequestSoftwareInterrupt”));
SetSpecialCall(GetAddress(“NTOSKRNL!SwapContext”));
SetSpecialCall(GetAddress(“NTOSKRNL!KiUnlockDispatcherDatabase”));

}
}

int main(int argc, char *argv[])
{

if (argc < 2) return 0;

NT:: SYSTEM_KERNEL_DEBUGGER_INFORMATION kd;

NT::ZwQuerySystemInformation(NT::SystemKernelDebuggerInformation,
&kd, sizeof kd, 0);

if (kd.DebuggerEnabled == FALSE) return 0;

1996 CH01 11/19/99 12:24 PM Page 55

System Information and Control: Example 1.3: Setting an Internal Breakpoint56

EnablePrivilege(SE_DEBUG_NAME);

SymInitialize(0, 0, FALSE);
SymSetOptions(SymGetOptions() | SYMOPT_DEFERRED_LOADS);

LoadModules();

SetSpecialCalls();

DBGKD_MANIPULATE_STATE op = {0};
op.u.SetInternalBreakpoint.BreakpointAddress = GetAddress(argv[1]);
op.u.SetInternalBreakpoint.Flags = argc < 3 ? 0 : strtoul(argv[2], 0, 16);

NT::ZwSystemDebugControl(NT::DebugSetInternalBreakpoint,
&op, sizeof op, 0, 0, 0);

return 0;
}

If the kernel debugger is not enabled, an important debugger variable is not initialized.
Therefore, Example 1.3 first uses ZwQuerySystemInformation to check the debugger
status and if it is enabled, the program then sets the special calls and creates or updates
a breakpoint.

The program also demonstrates how to obtain a list of the kernel modules and their
base addresses.This information is needed by the Imagehlp API routines, which are
used to translate symbolic names into addresses.

The program assumes that SymLoadModule will find the correct symbol files; if this rou-
tine finds the wrong symbol files (for example, symbols for a checked rather than free
build), a system crash is almost guaranteed.

Example 1.4: Getting Trace Information
#include “ntdll.h”
#include “windbgkd.h”
#include <stdio.h>

int main()
{

DBGKD_GET_INTERNAL_BREAKPOINT bp[20];
ULONG n;

EnablePrivilege(SE_DEBUG_NAME);

NT::ZwSystemDebugControl(NT::DebugGetTraceInformation,
0, 0, bp, sizeof bp, &n);

for (int i = 0; i * sizeof (DBGKD_GET_INTERNAL_BREAKPOINT) < n; i++)

printf(“%lx %lx %ld %ld %ld %ld %ld\n”,
bp[i].BreakpointAddress, bp[i].Flags,
bp[i].Calls, bp[i].MaxCallsPerPeriod,
bp[i].MinInstructions, bp[i].MaxInstructions,
bp[i].TotalInstructions);

return 0;
}

1996 CH01 11/19/99 12:24 PM Page 56

System Information and Control: Example 1.4: Getting Trace Information 57

The output produced by Example 1.4 after an internal breakpoint had been set at
NTOSKRNL!NtCreateProcess was:

80193206 0 6 0 19700 21010 121149

Therefore, the minimum number of instructions executed by NtCreateProcess was
19,700, the maximum number was 21,010, and the average number was about 20191.

1996 CH01 11/19/99 12:24 PM Page 57

1996 CH01 11/19/99 12:24 PM Page 58

2
Objects, Object
Directories, and
Symbolic Links

The system services described in this chapter either operate on objects without regard
to their type or manage the object namespace.

OBJECT_ATTRIBUTES

Almost all of the ZwCreateXxx and ZwOpenXxx routines require a pointer to an
OBJECT_ATTRIBUTES structure as one of their parameters.
typedef struct _OBJECT_ATTRIBUTES {

ULONG Length;
HANDLE RootDirectory;
PUNICODE_STRING ObjectName;
ULONG Attributes;
PSECURITY_DESCRIPTOR SecurityDescriptor;
PSECURITY_QUALITY_OF_SERVICE SecurityQualityOfService;

} OBJECT_ATTRIBUTES, *POBJECT_ATTRIBUTES;

Members

Length
The size in bytes of the OBJECT_ATTRIBUTES structure.

RootDirectory
Optionally specifies a handle to a “container” object.The ObjectName will be inter-
preted as a name relative to this container. Possible “container” object types include
Object Directories, File Directories, and Registry Keys.

ObjectName
Optionally specifies a name for the object to be created or opened.

1996 Ch02 11/19/99 12:25 PM Page 59

Objects, Object Directories, and Symbolic Links: OBJECT_ATTRIBUTES60

Attributes
A bit mask specifying attributes.This member can be zero, or a combination of the
following flags:

OBJ_INHERIT 0x00000002
OBJ_PERMANENT 0x00000010
OBJ_EXCLUSIVE 0x00000020
OBJ_CASE_INSENSITIVE 0x00000040
OBJ_OPENIF 0x00000080
OBJ_OPENLINK 0x00000100
OBJ_KERNEL_HANDLE 0x00000200

The meanings of the individual flags are discussed in “Remarks.” Depending on the
type of object to be created or opened, some of the flags are not valid and their
presence will result in the routine returning STATUS_INVALID_PARAMETER.

SecurityDescriptor
Optionally specifies a security descriptor to be applied to the object. Only meaningful
when creating a new object.

SecurityQualityOfService
Optionally specifies a security Quality of Service to be applied to the object. Only
meaningful when creating new Token or inter-process communication objects (such
as named pipes).

Remarks

The kernel does not maintain information about the current directory of a process.
(This information is maintained in user mode by ntdll.dll.).Therefore, when the
Win32 function CreateFile is called to open a file with a relative (to the current
directory) pathname, the RootDirectory member is used to convey the current direc-
tory information to the kernel.The Win32 registry functions always create or open
subkeys of existing key objects; when these functions call the appropriate native system
service, they store the existing key in the RootDirectory member and the subkey
name in the ObjectName member.

The OBJ_INHERIT flag specifies whether the handle can be inherited. Even if the
handle can be inherited, whether it is actually inherited depends on the arguments
to the ZwCreateProcess routine.

If an object has a name and is created with OBJ_PERMANENT, it will continue to exist,
even after the last handle reference to it has been closed.
SeCreatePermanentPrivilege is needed when specifying OBJ_PERMANENT.To delete a
permanent object, it is necessary to first obtain a handle to the object and then to
make the object temporary by calling ZwMakeTemporaryObject.

Directory and SymbolicLink objects are normally created as permanent objects, but
other objects such as Sections and Events can also be made permanent.
(“Permanent” means until next reboot.)

The OBJ_EXCLUSIVE flag specifies whether an object is exclusive to one process. If an
object is created with this flag, the attempts by other processes to access the object (by
opening it by name or duplicating its handle) will fail with STATUS_ACCESS_DENIED.

1996 Ch02 11/19/99 12:25 PM Page 60

Objects, Object Directories, and Symbolic Links: ZwQueryObject 61

The OBJ_CASE_INSENSITIVE flag controls how names are compared. If
OBJ_CASE_INSENSITIVE is set, subsequent name-lookup requests will ignore
the case of ObjectName rather than performing an exact-match search.

The OBJ_OPENIF flag specifies how the ZwCreateXxx routines should behave if an
object with the specified name already exists. If OBJ_OPENIF is set, the routines return
the information status STATUS_OBJECT_NAME_EXISTS and also return a handle to the
existing object. If OBJ_OPENIF is clear, the routines return the error status
STATUS_OBJECT_NAME_COLLISION and do not return a valid handle.

The OBJ_OPENLINK flag specifies whether the object itself or the object to which it is
linked should be opened.This flag is normally only used with Registry Keys. For
example,“\Registry\Machine\Security\Sam” is a registry link to
“\Registry\Machine\Sam,” and if it is opened with OBJ_OPENLINK then the returned
handle will refer to “\Registry\Machine\Sam.”These links are distinct from the
Symbolic Link objects created by ZwCreateSymbolicLinkObject.

The OBJ_KERNEL_HANDLE flag is only valid in Windows 2000. If a handle to an object is
created in kernel mode and OBJ_KERNEL_HANDLE is specified, the handle is created in
the “System” process rather than the current process.

ZwQueryObject

ZwQueryObject queries generic information about any object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryObject(

IN HANDLE ObjectHandle,
IN OBJECT_INFORMATION_CLASS ObjectInformationClass,
OUT PVOID ObjectInformation,
IN ULONG ObjectInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

ObjectHandle
A handle to an object.The handle need not grant any specific access. If the informa-
tion class requested does not return information which is specific to a particular object
or handle, this parameter may be zero.

ObjectInformationClass
The type of object information to be queried.The permitted values are drawn from
the enumeration OBJECT_INFORMATION_CLASS, described in the following section.

ObjectInformation
Points to a caller-allocated buffer or variable that receives the requested object
information.

1996 Ch02 11/19/99 12:25 PM Page 61

Objects, Object Directories, and Symbolic Links: Links: ZwQueryObject62

ObjectInformationLength
Specifies the size in bytes of ObjectInformation, that the caller should set according
to the given ObjectInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
ObjectInformation. If ObjectInformationLength is too small to contain the available
data, the variable is set to the number of bytes required for the available data. If this
information is not needed, ReturnLength may be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE,
STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions

GetHandleInformation.

Remarks

ZwQueryObject returns generic information about objects. For most object types there
is a native API routine that returns object type specific information. For example,
ZwQueryInformationProcess returns information specific to process objects.

ZwSetInformationObject

ZwSetInformationObject sets attributes on a handle to an object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetInformationObject(

IN HANDLE ObjectHandle,
IN OBJECT_INFORMATION_CLASS ObjectInformationClass,
IN PVOID ObjectInformation,
IN ULONG ObjectInformationLength
);

Parameters

ObjectHandle
A handle to an object.The handle need not grant any specific access.

ObjectInformationClass
The type of object information to be set.The permitted values are a subset of the
enumeration OBJECT_INFORMATION_CLASS, described in the following section.

ObjectInformation
Points to a caller-allocated buffer or variable that contains the object information to
be set.

1996 Ch02 11/19/99 12:25 PM Page 62

Objects, Object Directories, and Symbolic Links: ObjectBasedInfromation 63

ObjectInformationLength
Specifies the size in bytes of ObjectInformation, which the caller should set according
to the given ObjectInformationClass.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE,
STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions

SetHandleInformation.

Remarks

The Win32 function SetHandleInformation exposes the full functionality of
ZwSetInformationObject.

OBJECT_INFORMATION_CLASS
Query Set

typedef enum _OBJECT_INFORMATION_CLASS {
ObjectBasicInformation, // 0 Y N
ObjectNameInformation, // 1 Y N
ObjectTypeInformation, // 2 Y N
ObjectAllTypesInformation, // 3 Y N
ObjectHandleInformation // 4 Y Y

} OBJECT_INFORMATION_CLASS;

ObjectBasicInformation
typedef struct _OBJECT_BASIC_INFORMATION { // Information Class 0

ULONG Attributes;
ACCESS_MASK GrantedAccess;
ULONG HandleCount;
ULONG PointerCount;
ULONG PagedPoolUsage;
ULONG NonPagedPoolUsage;
ULONG Reserved[3];
ULONG NameInformationLength;
ULONG TypeInformationLength;
ULONG SecurityDescriptorLength;
LARGE_INTEGER CreateTime;

} OBJECT_BASIC_INFORMATION, *POBJECT_BASIC_INFORMATION;

Members

Attributes
A bit array of flags that specify properties of the object and the handle referring to it
that was used in the call to ZwQueryObject. Observed values include:

HANDLE_FLAG_INHERIT 0x01
HANDLE_FLAG_PROTECT_FROM_CLOSE 0x02
PERMANENT 0x10
EXCLUSIVE 0x20 (different encoding than in

SYSTEM_OBJECT_INFORMATION)

1996 Ch02 11/19/99 12:25 PM Page 63

Objects, Object Directories, and Symbolic Links: ObjectBasedInfromation64

GrantedAccess
The access to the object granted when the handle was created.

HandleCount
The number of handle references to the object.

PointerCount
The number of pointer references to the object.

PagedPoolUsage
The amount of paged pool used by the object if different from the default for the
object type.

NonPagedPoolUsage
The amount of nonpaged pool used by the object if different from the default for the
object type.

NameInformationLength
The size in bytes of the buffer that would be needed to hold the information returned
by the ObjectNameInformation class for the handle if this information is available. For
object types that manage their own namespace, such as Files and Keys, this value is
normally zero, meaning just that the value is unknown.

TypeInformationLength
The size in bytes of the buffer that would theoretically be needed to hold the infor-
mation returned by the ObjectTypeInformation class for the handle. In practice, if this
length is not a multiple of four, the required length is the lowest multiple of four that
is greater than TypeInformationLength.

SecurityDescriptorLength
The size in bytes of the buffer that would be needed to hold the information returned
by a call to ZwQuerySecurityObject for the handle.This information is only available
if the ObjectHandle parameter grants READ_CONTROL access, otherwise zero is returned.

CreateTime
If the object is a Symbolic Link, the creation time of the object in the standard time
format (that is, the number of 100-nanosecond intervals since January 1, 1601), other-
wise zero.

Remarks

The code in Example 2.1 uses this information class.

1996 Ch02 11/19/99 12:25 PM Page 64

Objects, Object Directories, and Symbolic Links: ObjectTypeInformation 65

ObjectNameInformation
typedef struct _OBJECT_NAME_INFORMATION { // Information Class 1

UNICODE_STRING Name;
} OBJECT_NAME_INFORMATION, *POBJECT_NAME_INFORMATION;

Members

Name
The name of the object.

Remarks

The ObjectInformation buffer should be large enough to hold a UNICODE_STRING
structure and the associated Buffer, which holds the characters of the string.

If the object to which the handle refers is a file object and the handle was opened
for synchronous access (by specifying FILE_SYNCHRONOUS_IO_ALERT or FILE_
SYNCHRONOUS_IO_NONALERT as CreateOptions), queries of this information class will be
synchronized with other file operations on the handle.

The code in Example 2.1 uses this information class.

ObjectTypeInformation
typedef struct _OBJECT_TYPE_INFORMATION { // Information Class 2

UNICODE_STRING Name;
ULONG ObjectCount;
ULONG HandleCount;
ULONG Reserved1[4];
ULONG PeakObjectCount;
ULONG PeakHandleCount;
ULONG Reserved2[4];
ULONG InvalidAttributes;
GENERIC_MAPPING GenericMapping;
ULONG ValidAccess;
UCHAR Unknown;
BOOLEAN MaintainHandleDatabase;
POOL_TYPE PoolType;
ULONG PagedPoolUsage;
ULONG NonPagedPoolUsage;

} OBJECT_TYPE_INFORMATION, *POBJECT_TYPE_INFORMATION;

Members

Name
A name that identifies this object type.

ObjectCount
The number of objects of this type in the system.

HandleCount
The number of handles to objects of this type in the system.

1996 Ch02 11/19/99 12:25 PM Page 65

Objects, Object Directories, and Symbolic Links: ObjectAllTypesInformation66

PeakObjectCount
The peak number of objects of this type in the system.

PeakHandleCount
The peak number of handles to objects of this type in the system.

InvalidAttributes
A bit mask of the OBJ_Xxx attributes that are not valid for objects of this type.

GenericMapping
The mapping of generic access rights to specific access rights for this object type.

ValidAccessMask
The valid specific access rights for this object type.

Unknown
Interpretation unknown. Same as SYSTEM_OBJECT_TYPE_INFORMATION.Unknown.

MaintainHandleDatabase
Specifies whether the handles to objects of this type should be recorded in the objects
to which they refer.

PoolType
The type of pool from which this object type is allocated (paged or nonpaged).

PagedPoolUsage
The amount of paged pool used by objects of this type.

NonPagedPoolUsage
The amount of nonpaged pool used by objects of this type.

Remarks

The ObjectInformation buffer should be large enough to hold the Buf fer associated
with the Name UNICODE_STRING.

This information is similar to that returned by ZwQuerySystemInformation with an
information class of SystemObjectInformation (17).

The code in Example 2.1 uses this information class.

ObjectAllTypesInformation
typedef struct _OBJECT_ALL_TYPES_INFORMATION { // Information Class 3

ULONG NumberOfTypes;
OBJECT_TYPE_INFORMATION TypeInformation;

} OBJECT_ALL_TYPES_INFORMATION, *POBJECT_ALL_TYPES_INFORMATION;

1996 Ch02 11/19/99 12:25 PM Page 66

Objects, Object Directories, and Symbolic Links: ZwDuplicateObject 67

Members

NumberOfTypes
The number of types known to the object manager.

TypeInformation
A sequence of OBJECT_TYPE_INFORMATION structures, one per type.

Remarks

The ObjectHandle parameter need not contain a valid handle to query this
information class.

The Buffer associated with the type name immediately follows each
OBJECT_TYPE_INFORMATION structure.The next OBJECT_TYPE_INFORMATION structure
follows this Buffer, starting on the first four-byte boundary.

This information is similar to that returned by ZwQuerySystemInformation with an
information class of SystemObjectInformation (17).

ObjectHandleInformation
typedef struct _OBJECT_HANDLE_ATTRIBUTE_INFORMATION { // Information Class 4

BOOLEAN Inherit;
BOOLEAN ProtectFromClose;

} OBJECT_HANDLE_ATTRIBUTE_INFORMATION, *POBJECT_HANDLE_ATTRIBUTE_INFORMATION;

Members

Inherit
Specifies whether the handle should be inherited by child processes.

ProtectFromClose
Specifies whether the handle should be protected from being closed.

Remarks

This information class can be both queried and set.

The Win32 functions GetHandleInformation and SetHandleInformation query and
set this information.

ZwDuplicateObject

ZwDuplicateObject duplicates the handle to an object.
NTSYSAPI
NTSTATUS
NTAPI
ZwDuplicateObject(

IN HANDLE SourceProcessHandle,
IN HANDLE SourceHandle,

1996 Ch02 11/19/99 12:25 PM Page 67

Objects, Object Directories, and Symbolic Links: ZwDuplicateObject68

IN HANDLE TargetProcessHandle,
OUT PHANDLE TargetHandle OPTIONAL,
IN ACCESS_MASK DesiredAccess,
IN ULONG Attributes,
IN ULONG Options
);

Parameters

SourceProcessHandle
Identifies the process containing the handle to duplicate.The handle must grant
PROCESS_DUP_HANDLE access.

SourceHandle
Identifies the handle to duplicate.The handle need not grant any specific access.

TargetProcessHandle
Identifies the process that is to receive the duplicated handle.The handle must grant
PROCESS_DUP_HANDLE access.

TargetHandle
Points to a caller-allocated buffer or variable that receives the value of the duplicate
handle. If TargetHandle is a null pointer, the handle is duplicated, but its value is not
returned to the caller.

DesiredAccess
Specifies the access requested for the new handle.This parameter is ignored if the
Options parameter specifies the DUPLICATE_SAME_ACCESS flag.

Attributes
Specifies the set of attributes for the new handle.The valid values include
HANDLE_FLAG_INHERIT and HANDLE_FLAG_PROTECT_FROM_CLOSE.This parameter is
ignored if the Options parameter specifies the DUPLICATE_SAME_ATTRIBUTES flag.

Options
Specifies optional actions.This parameter can be zero, or any combination of the
following flags:

DUPLICATE_CLOSE_SOURCE Closes the source handle. This occurs
regardless of any error status returned.

DUPLICATE_SAME_ACCESS Ignores the DesiredAccess parameter. The
duplicate handle has the same access as the
source handle.

DUPLICATE_SAME_ATTRIBUTES Ignores the Attributes parameter. The
duplicate handle has the same attributes as
the source handle.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE,
STATUS_ACCESS_DENIED, or STATUS_PROCESS_IS_TERMINATING.

1996 Ch02 11/19/99 12:25 PM Page 68

Objects, Object Directories, and Symbolic Links: ZwClose 69

Related Win32 Functions

DuplicateHandle.

Remarks

The Win32 function DuplicateHandle exposes the full functionality of
ZwDuplicateObject.

ZwMakeTemporaryObject

ZwMakeTemporaryObject removes the permanent attribute of an object if it was
present.

NTSYSAPI
NTSTATUS
NTAPI
ZwMakeTemporaryObject(

IN HANDLE Handle
);

Parameters

Handle
A handle to an object.The handle need not grant any specific access.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE or
STATUS_ACCESS_DENIED.

Related Win32 Functions

None.

Remarks

ZwMakeTemporaryObject is documented in the DDK.

ZwClose

ZwClose closes a handle to an object.

NTSYSAPI
NTSTATUS
NTAPI
ZwClose(

IN HANDLE Handle
);

1996 Ch02 11/19/99 12:25 PM Page 69

Objects, Object Directories, and Symbolic Links: ZwClose70

Parameters

Handle
A handle to an object.The handle need not grant any specific access.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE, or
STATUS_HANDLE_NOT_CLOSABLE.

Related Win32 Functions

CloseHandle.

Remarks

ZwClose is documented in the DDK.

Example 2.1: Listing Open Handles of a Process
#include “ntdll.h”
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

if (argc == 1) return 0;

ULONG pid = strtoul(argv[1], 0, 0);

EnablePrivilege(SE_DEBUG_NAME);

HANDLE hProcess = OpenProcess(PROCESS_DUP_HANDLE, FALSE, pid);

ULONG n = 0x1000;
PULONG p = new ULONG[n];

while (NT::ZwQuerySystemInformation(NT::SystemHandleInformation,
p, n * sizeof *p, 0)

== STATUS_INFO_LENGTH_MISMATCH)

delete [] p, p = new ULONG[n *= 2];

NT::PSYSTEM_HANDLE_INFORMATION h = NT::PSYSTEM_HANDLE_INFORMATION(p + 1);

for (ULONG i = 0; i < *p; i++) {

if (h[i].ProcessId == pid) {
HANDLE hObject;

if (NT::ZwDuplicateObject(hProcess, HANDLE(h[i].Handle),
NtCurrentProcess(), &hObject,
0, 0, DUPLICATE_SAME_ATTRIBUTES)

!= STATUS_SUCCESS) continue;

NT::OBJECT_BASIC_INFORMATION obi;

1996 Ch02 11/19/99 12:25 PM Page 70

Objects, Object Directories, and Symbolic Links: ZwQuerySecurityObject 71

NT::ZwQueryObject(hObject, NT::ObjectBasicInformation,
&obi, sizeof obi, &n);

printf(“%p %04hx %6lx %2x %3lx %3ld %4ld “,
h[i].Object, h[i].Handle, h[i].GrantedAccess,
int(h[i].Flags), obi.Attributes,
obi.HandleCount - 1, obi.PointerCount - 2);

n = obi.TypeInformationLength + 2;

NT::POBJECT_TYPE_INFORMATION oti
= NT::POBJECT_TYPE_INFORMATION(new CHAR[n]);

NT::ZwQueryObject(hObject, NT::ObjectTypeInformation,
oti, n, &n);

printf(“%-14.*ws “, oti[0].Name.Length / 2, oti[0].Name.Buffer);

n = obi.NameInformationLength == 0
? MAX_PATH * sizeof (WCHAR) : obi.NameInformationLength;

NT::POBJECT_NAME_INFORMATION oni
= NT::POBJECT_NAME_INFORMATION(new CHAR[n]);

NTSTATUS rv = NT::ZwQueryObject(hObject,
NT::ObjectNameInformation,
oni, n, &n);

if (NT_SUCCESS(rv))
printf(“%.*ws”, oni[0].Name.Length / 2, oni[0].Name.Buffer);

printf(“\n”);

CloseHandle(hObject);
}

}
delete [] p;

CloseHandle(hProcess);

return 0;
}

Unlike Example 1.2, Example 2.1 does not require any particular setting of
NtGlobalFlag. However, it has the drawback of hanging when querying the names
of pipes that have been opened for synchronous access and that have a pending read or
write operation.All services have such a handle (used for communication with the
Service Control Manager).

When displaying the HandleCount and PointerCount values, Example 1.2 subtracts
the contribution to the counts arising from its own references to the object.

ZwQuerySecurityObject
ZwQuerySecurityObject retrieves a copy of the security descriptor protecting an
object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySecurityObject(

1996 Ch02 11/19/99 12:25 PM Page 71

Objects, Object Directories, and Symbolic Links: ZwQuerySecurityObject72

IN HANDLE Handle,
IN SECURITY_INFORMATION SecurityInformation,
OUT PSECURITY_DESCRIPTOR SecurityDescriptor,
IN ULONG SecurityDescriptorLength,
OUT PULONG ReturnLength
);

Parameters

Handle
A handle to an object.The handle must either grant READ_CONTROL access to the object
or the caller must be the owner of the object.To access the system ACL of the object,
the handle must grant ACCESS_SYSTEM_SECURITY.

SecurityInformation
A bit mask specifying the type of information being requested.The defined values are:

OWNER_SECURITY_INFORMATION 0x01
GROUP_SECURITY_INFORMATION 0x02
DACL_SECURITY_INFORMATION 0x04
SACL_SECURITY_INFORMATION 0x08

SecurityDescriptor
Points to a caller-allocated buffer or variable that receives the requested security infor-
mation in the form of a SECURITY_DESCRIPTOR.The SECURITY_DESCRIPTOR structure is
returned in self-relative format.

SecurityDescriptorLength
The size in bytes of SecurityDescriptor.

ReturnLength
Points to a variable that receives the number of bytes actually returned to
SecurityDescriptor. If SecurityDescriptorLength is too small to contain the avail-
able data, the variable is set to the number of bytes required for the available data.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions

GetKernelObjectSecurity, GetUserObjectSecurity.

Remarks

GetKernelObjectSecurity and GetUserObjectSecurity both expose the full
functionality of ZwQuerySecurityObject.

SeSecurityPrivilege is needed to open an object for ACCESS_SYSTEM_SECURITY
access.This privilege need not be enabled at the time of calling
ZwQuerySecurityObject.

1996 Ch02 11/19/99 12:25 PM Page 72

Objects, Object Directories, and Symbolic Links: ZwCreateDirectoryObject 73

ZwSetSecurityObject

ZwSetSecurityObject sets the security descriptor protecting an object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetSecurityObject(

IN HANDLE Handle,
IN SECURITY_INFORMATION SecurityInformation,
IN PSECURITY_DESCRIPTOR SecurityDescriptor
);

Parameters

Handle
A handle to an object.The handle must either grant WRITE_OWNER and/or WRITE_DAC
access to the object as appropriate, or the caller must be the owner of the object.To
access the system ACL of the object, the handle must grant ACCESS_SYSTEM_SECURITY.

SecurityInformation
A bit mask specifying the type of information being set.The defined values are:

OWNER_SECURITY_INFORMATION 0x01
GROUP_SECURITY_INFORMATION 0x02
DACL_SECURITY_INFORMATION 0x04
SACL_SECURITY_INFORMATION 0x08

SecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure containing the new security information.
The SECURITY_DESCRIPTOR structure must be in self-relative format.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions

SetKernelObjectSecurity, SetUserObjectSecurity.

Remarks

SetKernelObjectSecurity and SetUserObjectSecurity both expose the full func-
tionality of ZwSetSecurityObject.

SeSecurityPrivilege is needed to open an object for ACCESS_SYSTEM_SECURITY
access.This privilege need not be enabled at the time of calling ZwSetSecurityObject.

ZwCreateDirectoryObject

ZwCreateDirectoryObject creates or opens an object directory.
NTSYSAPI
NTSTATUS
NTAPI

1996 Ch02 11/19/99 12:25 PM Page 73

Objects, Object Directories, and Symbolic Links: ZwCreateDirectoryObject74

ZwCreateDirectoryObject(
OUT PHANDLE DirectoryHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

DirectoryHandle
Points to a caller-allocated buffer or variable that receives the value of the directory
object handle if the call is successful.

DesiredAccess
The type of access that the caller requires to the directory object.This parameter can
be zero, or any combination of the following flags:

DIRECTORY_QUERY Query access
DIRECTORY_TRAVERSE Name lookup access
DIRECTORY_CREATE_OBJECT Name creation access
DIRECTORY_CREATE_SUBDIRECTORY Subdirectory creation access
DIRECTORY_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes, including the name for the
new directory object. OBJ_OPENLINK is not a valid attribute for a directory object.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_EXISTS, or STATUS_OBJECT_NAME_COLLISION.

Related Win32 Functions

None.

Remarks

ZwCreateDirectoryObject is documented in the DDK.

ZwOpenDirectoryObject

ZwOpenDirectoryObject opens an object directory.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenDirectoryObject(

OUT PHANDLE DirectoryHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

1996 Ch02 11/19/99 12:25 PM Page 74

Objects, Object Directories, and Symbolic Links: ZwQueryDirectoryObject 75

Parameters

DirectoryHandle
Points to a caller-allocated buffer or variable that receives the value of the directory
object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the directory object.This
parameter can be zero, or any combination of the following flags:

DIRECTORY_QUERY Query access
DIRECTORY_TRAVERSE Name lookup access
DIRECTORY_CREATE_OBJECT Name creation access
DIRECTORY_CREATE_SUBDIRECTORY Subdirectory creation access
DIRECTORY_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes, including the name of the
directory object. OBJ_OPENLINK is not a valid attribute for a directory object.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED, or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions

None.

Remarks

None.

ZwQueryDirectoryObject

ZwQueryDirectoryObject retrieves information about the contents of an object
directory.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryDirectoryObject(

IN HANDLE DirectoryHandle,
OUT PVOID Buffer,
IN ULONG BufferLength,
IN BOOLEAN ReturnSingleEntry,
IN BOOLEAN RestartScan,
IN OUT PULONG Context,
OUT PULONG ReturnLength OPTIONAL
);

1996 Ch02 11/19/99 12:25 PM Page 75

Objects, Object Directories, and Symbolic Links: ZwQueryDirectoryObject76

Parameters

DirectoryHandle
A handle to a directory object.The handle must grant DIRECTORY_QUERY access.

Buffer
Points to a caller-allocated buffer or variable that receives the names of entries in the
directory.

BufferLength
Specifies the size in bytes of Buffer.

ReturnSingleEntry
Specifies whether a single entry should be returned; if false, as many entries as will fit
in the buffer are returned.

RestartScan
Specifies whether the scan of the directory should be restarted; if true, the input value
of the Context parameter is ignored.

Context
Points to a caller-allocated buffer or variable that maintains the position of a directory
scan.

ReturnLength
Optionally points to number of bytes actually returned to Buffer. If this information is
not needed, ReturnLength may be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_MORE_ENTRIES, STATUS_NO_MORE_ENTRIES, or STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions

QueryDosDevice.

Remarks

The information returned to Buffer is an array of DIRECTORY_BASIC_INFORMATION
structures, terminated by a DIRECTORY_BASIC_INFORMATION structure containing all
zeroes.The strings pointed to by the UNICODE_STRING members follow this data, and
the Buffer must be large enough to contain them.
typedef struct _DIRECTORY_BASIC_INFORMATION {

UNICODE_STRING ObjectName;
UNICODE_STRING ObjectTypeName;

} DIRECTORY_BASIC_INFORMATION, *PDIRECTORY_BASIC_INFORMATION;

QueryDosDevice can only scan one fixed directory, namely “\??” (ignoring complica-
tions arising from multi-user support under Windows Terminal Server).This directory
was formerly named “\DosDevices” and is conventionally used to store symbolic links
to device objects.

1996 Ch02 11/19/99 12:25 PM Page 76

Objects, Object Directories, and Symbolic Links: ZwCreateSymbolicLinkObject 77

ZwCreateSymbolicLinkObject

ZwCreateSymbolicLinkObject creates or opens a symbolic link object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateSymbolicLinkObject(

OUT PHANDLE SymbolicLinkHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PUNICODE_STRING TargetName
);

Parameters

SymbolicLinkHandle
Points to a caller-allocated buffer or variable that receives the value of the symbolic
link object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the symbolic link object.This
parameter can be zero, or any combination of the following flags:

SYMBOLIC_LINK_QUERY Query access
SYMBOLIC_LINK_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes, including the name of the
symbolic link object. OBJ_OPENLINK is not a valid attribute for a symbolic link object.

TargetName
Specifies the name of the object for which the symbolic link will be an alias.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_EXISTS, or STATUS_OBJECT_NAME_COLLISION.

Related Win32 Functions

DefineDosDevice.

Remarks

DefineDosDevice can only create symbolic links in one fixed directory, namely “\??”
(ignoring complications arising from multi-user support under Windows Terminal
Server).

1996 Ch02 11/19/99 12:25 PM Page 77

Objects, Object Directories, and Symbolic Links: ZwOpenSymbolicLinkObject78

ZwOpenSymbolicLinkObject

ZwOpenSymbolicLinkObject opens a symbolic link object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenSymbolicLinkObject(

OUT PHANDLE SymbolicLinkHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

SymbolicLinkHandle
Points to a caller-allocated buffer or variable that receives the value of the symbolic
link object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the symbolic link object.This
parameter can be zero, or any combination of the following flags:

SYMBOLIC_LINK_QUERY Query access
SYMBOLIC_LINK_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes, including the name of the
symbolic link object. OBJ_OPENLINK is not a valid attribute for a symbolic link object.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED, or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions

None.

Remarks

None.

ZwQuerySymbolicLinkObject

ZwQuerySymbolicLinkObject retrieves the name of the target of a symbolic link.
NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySymbolicLinkObject(

IN HANDLE SymbolicLinkHandle,
IN OUT PUNICODE_STRING TargetName,
OUT PULONG ReturnLength OPTIONAL
);

1996 Ch02 11/19/99 12:25 PM Page 78

Objects, Object Directories, and Symbolic Links: ZwQuerySymbolicLinkObject 79

Parameters

SymbolicLinkHandle
A handle to a symbolic link object.The handle must grant SYMBOLIC_LINK_QUERY
access.

TargetName
Points to a caller-allocated buffer or variable containing an initialised UNICODE_STRING
with valid Buffer and MaximumLength members. If the call is successful, the Length
member is updated.

ReturnLength
Optionally points to number of bytes actually returned to TargetName.Buffer. If this
information is not needed, ReturnLength may be a null pointer.This length includes
the trailing UNICODE null character.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions

QueryDosDevice.

Remarks

QueryDosDevice can only query symbolic links in one fixed directory, namely
“\??”(ignoring complications arising from multi-user support under Windows
Terminal Server).

1996 Ch02 11/19/99 12:25 PM Page 79

1996 Ch02 11/19/99 12:25 PM Page 80

3
Virtual Memory

The system services described in this chapter manipulate virtual memory.

ZwAllocateVirtualMemory

ZwAllocateVirtualMemory allocates virtual memory in the user mode address range.
NTSYSAPI
NTSTATUS
NTAPI
ZwAllocateVirtualMemory(

IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN ULONG ZeroBits,
IN OUT PULONG AllocationSize,
IN ULONG AllocationType,
IN ULONG Protect
);

Parameters

ProcessHandle
A handle of a process object, representing the process for which the virtual memory
should be allocated.The handle must grant PROCESS_VM_OPERATION access.

BaseAddress
Points to a variable that will receive the base address of the allocated virtual memory.
If the initial value of this variable is not null, the virtual memory is allocated starting at
the specified address and rounded down to the nearest allocation granularity boundary
if necessary.

ZeroBits
Specifies the number of high-order address bits that must be zero in the base address
of the virtual memory.The value of this parameter must be less than 21; it is used only
when the operating system determines where to allocate the virtual memory,such as
when BaseAddress is null.

1996 Ch03 11/19/99 12:25 PM Page 81

Virtual Memory: ZwAllocateVirtualMemory82

AllocationSize
It points to a variable that specifies the size, in bytes, of the virtual memory to allocate,
and receives the size of virtual memory actually allocated. If BaseAddress is null, this
value is rounded up to the next page size boundary; otherwise, it is adjusted to the size
of all the pages that contain one or more bytes in the range from BaseAddress to
(BaseAddress+AllocationSize).

AllocationType
A set of flags that describes the type of allocation to be performed for the specified
region of pages.The permitted values are selected combinations of the flags:

MEM_COMMIT 0x001000 Commit memory
MEM_RESERVE 0x002000 Reserve but do not commit memory
MEM_RESET 0x080000 Mark data in memory as obsolete
MEM_TOP_DOWN 0x100000 Allocate at highest possible address
MEM_WRITE_WATCH 0x200000 Track writes to memory
MEM_PHYSICAL 0x400000 Create a physical view

Protect
Specifies the protection for the pages in the region. Permitted values are drawn from
the following list, possibly combined with PAGE_GUARD or PAGE_NOCACHE:

PAGE_NOACCESS
PAGE_READONLY
PAGE_READWRITE
PAGE_EXECUTE
PAGE_EXECUTE_READ
PAGE_EXECUTE_READWRITE

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_NO_MEMORY, STATUS_
CONFLICTING_ADDRESSES, STATUS_ALREADY_COMMITTED, STATUS_INVALID_PAGE_
PROTECTION, or STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
VirtualAlloc, VirtualAllocEx.

Remarks
VirtualAllocEx exposes almost all of the functionality of ZwAllocateVirtualMemory.

To commit virtual memory, it must either first be reserved, or both MEM_COMMIT and
MEM_RESERVE must be specified as the AllocationType (optionally combined with
MEM_TOP_DOWN).

The flag MEM_RESET is documented in the Knowledge Base article Q162104 and in
newer versions of the Platform SDK.

The flag MEM_WRITE_WATCH is only valid in Windows 2000. If the system does not
support write watching and this flag is specified, ZwAllocateVirtualMemory fails with
status STATUS_NOT_SUPPORTED.

1996 Ch03 11/19/99 12:25 PM Page 82

Virtual Memory: ZwFreeVirtualMemory 83

The flag MEM_PHYSICAL is only valid in Windows 2000; it can only and must be com-
bined with the flag MEM_RESERVE. It reserves a range of virtual addresses to be used to
map views of physical memory allocated with ZwAllocateUserPhysicalPages.

ZwFreeVirtualMemory

ZwFreeVirtualMemory frees virtual memory in the user mode address range.
NTSYSAPI
NTSTATUS
NTAPI
ZwFreeVirtualMemory(

IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG FreeSize,
IN ULONG FreeType
);

Parameters

ProcessHandle
A handle of a process object, representing the process from which the virtual memory
should be freed.The handle must grant PROCESS_VM_OPERATION access.

BaseAddress
Points to a variable that specifies the base address of the virtual memory to be freed.

FreeSize
Points to a variable that specifies the size, in bytes, of the virtual memory to free and
receives the size of virtual memory actually freed. If FreeType is MEM_RELEASE, this
value must be zero.

FreeType
A set of flags that describes the type of de-allocation to be performed for the specified
region of pages.The permitted values are:

MEM_DECOMMIT Decommit but maintain reservation
MEM_RELEASE Decommit and free reservation

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_UNABLE_TO_FREE_VM,
STATUS_UNABLE_TO_DELETE_SECTION, STATUS_FREE_VM_NOT_AT_BASE,
STATUS_MEMORY_NOT_ALLOCATED, or STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
VirtualFree, VirtualFreeEx.

Remarks
VirtualFreeEx exposes almost all of the functionality of ZwFreeVirtualMemory.

1996 Ch03 11/19/99 12:25 PM Page 83

Virtual Memory: ZwQueryVirtualMemory84

ZwQueryVirtualMemory

ZwQueryVirtualMemory retrieves information about virtual memory in the user mode
address range.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryVirtualMemory(

IN HANDLE ProcessHandle,
IN PVOID BaseAddress,
IN MEMORY_INFORMATION_CLASS MemoryInformationClass,
OUT PVOID MemoryInformation,
IN ULONG MemoryInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

ProcessHandle
A handle of a process object, representing the process whose virtual memory informa-
tion is queried.The handle must grant PROCESS_QUERY_INFORMATION access.

BaseAddress
The base address of the region of pages to be queried.This value is rounded down to
the next page boundary. If the information class requested does not return information
that is specific to a particular address, this parameter may be zero.

MemoryInformationClass
The type of virtual memory information to be queried.The permitted values are
drawn from the enumeration MEMORY_INFORMATION_CLASS, described in the following
section.

MemoryInformation
Points to a caller-allocated buffer or variable that receives the requested virtual
memory information.

MemoryInformationLength
Specifies the size in bytes of MemoryInformation, which the caller should set according
to the given MemoryInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
MemoryInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_INFO_CLASS,
STATUS_INFO_LENGTH_MISMATCH, STATUS_INVALID_ADDRESS, STATUS_FILE_INVALID, or
STATUS_PROCESS_IS_TERMINATING.

1996 Ch03 11/19/99 12:25 PM Page 84

Virtual Memory: MemoryBasicInformation 85

Related Win32 Functions
VirtualQuery, VirtualQueryEx.

Remarks
None.

MEMORY_INFORMATION_CLASS
typedef enum _MEMORY_INFORMATION_CLASS {

MemoryBasicInformation,
MemoryWorkingSetList,
MemorySectionName,
MemoryBasicVlmInformation

} MEMORY_INFORMATION_CLASS;

MemoryBasicInformation
typedef struct _MEMORY_BASIC_INFORMATION { // Information Class 0

PVOID BaseAddress;
PVOID AllocationBase;
ULONG AllocationProtect;
ULONG RegionSize;
ULONG State;
ULONG Protect;
ULONG Type;

} MEMORY_BASIC_INFORMATION, *PMEMORY_BASIC_INFORMATION;

Members

BaseAddress
The virtual base address of the region of pages.

AllocationBase
The virtual base address of the initial allocation region that contains this region.

AllocationProtect
The access protection of the pages specified when the region was initially allocated.
Possible values are drawn from the following list, possibly combined with PAGE_GUARD
or PAGE_NOCACHE:

PAGE_NOACCESS
PAGE_READONLY
PAGE_READWRITE
PAGE_EXECUTE
PAGE_EXECUTE_READ
PAGE_EXECUTE_READWRITE

RegionSize
The size, in bytes, of the region beginning at the base address in which all pages
belong to the same initial allocation region and have identical protection and state
attributes.

1996 Ch03 11/19/99 12:25 PM Page 85

Virtual Memory: MemoryBasicInformation86

State
The state of the pages in the region. Possible values include:

MEM_COMMIT Memory is reserved and committed
MEM_RESERVE Memory is reserved but not committed
MEM_FREE Memory is free

Protect
The current access protection of the pages in the region.

Type
The type of the pages in the region. Possible values include zero if the state is
MEM_FREE, or:

MEM_PRIVATE Memory is private
MEM_MAPPED Memory is shareable and mapped from a data section
MEM_IMAGE Memory is shareable and mapped from an image section

Remarks
MEMORY_BASIC_INFORMATION is identical to the structure of the same name returned by
the Win32 function VirtualQueryEx.

MemoryWorkingSetList
typedef struct _MEMORY_WORKING_SET_LIST { // Information Class 1

ULONG NumberOfPages;
ULONG WorkingSetList[1];

} MEMORY_WORKING_SET_LIST, *PMEMORY_WORKING_SET_LIST;

Members

NumberOfPages
The number of pages in the working set list.

WorkingSetList
An array of working set list entries.The high 20 bits of an entry represent the high 20
bits of the virtual address of the working set list entry, and the low 12 bits are a bit
array of flags.The following flag interpretations are defined:

WSLE_PAGE_READONLY 0x001 // Page is read only
WSLE_PAGE_EXECUTE 0x002 // Page is executable
WSLE_PAGE_READWRITE 0x004 // Page is writeable
WSLE_PAGE_EXECUTE_READ 0x003
WSLE_PAGE_WRITECOPY 0x005 // Page should be copied on write
WSLE_PAGE_EXECUTE_READWRITE 0x006
WSLE_PAGE_EXECUTE_WRITECOPY 0x007 // Page should be copied on write
WSLE_PAGE_SHARE_COUNT_MASK 0x0E0
WSLE_PAGE_SHAREABLE 0x100 // Page is shareable

Remarks
ZwQueryVirtualMemory with an information class of MemoryWorkingSetList always
returns STATUS_SUCCESS.To test for success, verify that MemoryInformationLength is
greater than the ReturnLength.

1996 Ch03 11/19/99 12:25 PM Page 86

Virtual Memory: ZwLockVirtualMemory 87

Flag bits that are not defined are neither set nor cleared, and so it is advisable to zero
the MemoryInformation buffer before calling ZwQueryVirtualMemory.

An indication of whether a page is locked (in memory or in the working set) is not
returned although this information is stored in the working set list of the process.

The PSAPI function QueryWorkingSet uses this information class.

The share count for shareable pages is only available in Windows 2000.A share count
of seven means that at least seven processes are sharing the page.

MemorySectionName
typedef struct _MEMORY_SECTION_NAME { // Information Class 2

UNICODE_STRING SectionFileName;
} MEMORY_SECTION_NAME, *PMEMORY_SECTION_NAME;

Members

SectionFileName
The name of the file backing the section.

Remarks
The BaseAddress parameter must point to the base address of a mapped data section;
the name of the file backing an image section is not returned (this seems to be an
arbitrary restriction in the implementation of ZwQueryVirtualMemory).

MemoryInformationLength must be large enough to accommodate the
UNICODE_STRING structure and the actual Unicode string name itself.

The PSAPI function GetMappedFileName uses this information class.

ZwLockVirtualMemory

ZwLockVirtualMemory locks virtual memory in the user mode address range, ensuring
that subsequent accesses to the locked region of virtual memory will not incur page
faults.
NTSYSAPI
NTSTATUS
NTAPI
ZwLockVirtualMemory(

IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG LockSize,
IN ULONG LockType
);

Parameters

ProcessHandle
A handle of a process object, representing the process for which the virtual memory
should be locked.The handle must grant PROCESS_VM_OPERATION access.

1996 Ch03 11/19/99 12:25 PM Page 87

Virtual Memory: ZwLockVirtualMemory88

BaseAddress
Points to a variable that specifies the base address of the virtual memory to be locked,
and receives the base address of the virtual memory actually locked.

LockSize
Points to a variable that specifies the size, in bytes, of the virtual memory to lock, and
receives the size of virtual memory actually locked.

LockType
A set of flags that describes the type of locking to be performed for the specified
region of pages.The permitted values are combinations of the flags:

LOCK_VM_IN_WSL 0x01 // Lock page in working set list
LOCK_VM_IN_RAM 0x02 // Lock page in physical memory

Return Value
Returns STATUS_SUCCESS, STATUS_WAS_LOCKED or an error status, such as
STATUS_PRIVILEGE_NOT_HELD, STATUS_WORKING_SET_QUOTA, or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
VirtualLock.

Remarks
SeLockMemoryPrivilege is required to lock pages in physical memory.

All of the pages that contain one or more bytes in the range from BaseAddress to
(BaseAddress+LockSize) are locked.

ZwUnlockVirtualMemory

ZwUnlockVirtualMemory unlocks virtual memory in the user mode address range.
NTSYSAPI
NTSTATUS
NTAPI
ZwUnlockVirtualMemory(

IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG LockSize,
IN ULONG LockType
);

Parameters

ProcessHandle
A handle of a process object, representing the process for which the virtual memory
should be unlocked.The handle must grant PROCESS_VM_OPERATION access.

1996 Ch03 11/19/99 12:25 PM Page 88

Virtual Memory: ZwReadVirtualMemory 89

BaseAddress
Points to a variable that specifies the base address of the virtual memory to be
unlocked, and receives the size of virtual memory actually unlocked.

LockSize
Points to a variable that specifies the size, in bytes, of the virtual memory to unlock,
and receives the size of virtual memory actually unlocked.

LockType
A set of flags that describes the type of unlocking to be performed for the specified
region of pages.The permitted values are combinations of the flags:

LOCK_VM_IN_WSL 0x01 // Unlock page from working set list
LOCK_VM_IN_RAM 0x02 // Unlock page from physical memory

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_NOT_LOCKED, or STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
VirtualUnlock.

Remarks
SeLockMemoryPrivilege is required to unlock pages from physical memory.

All of the pages that contain one or more bytes in the range from BaseAddress to
(BaseAddress+LockSize) are unlocked.They must all have been previously locked.

ZwReadVirtualMemory

ZwReadVirtualMemory reads virtual memory in the user mode address range of
another process.
NTSYSAPI
NTSTATUS
NTAPI
ZwReadVirtualMemory(

IN HANDLE ProcessHandle,
IN PVOID BaseAddress,
OUT PVOID Buffer,
IN ULONG BufferLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

ProcessHandle
A handle of a process object, representing the process from which the virtual memory
should be read.The handle must grant PROCESS_VM_READ access.

1996 Ch03 11/19/99 12:25 PM Page 89

Virtual Memory: ZwReadVirtualMemory90

BaseAddress
The base address of the virtual memory to read.

Buffer
Points to a caller-allocated buffer or variable that receives the contents of the virtual
memory.

BufferLength
Specifies the size in bytes of Buffer and the number of bytes of virtual memory to
read.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
Buffer if the call was successful. If this information is not needed, ReturnLength may
be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_VIOLATION or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
ReadProcessMemory.

Remarks
ReadProcessMemory exposes the full functionality of ZwReadVirtualMemory.

ZwWriteVirtualMemory

ZwWriteVirtualMemory writes virtual memory in the user mode address range of
another process.
NTSYSAPI
NTSTATUS
NTAPI
ZwWriteVirtualMemory(

IN HANDLE ProcessHandle,
IN PVOID BaseAddress,
IN PVOID Buffer,
IN ULONG BufferLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

ProcessHandle
A handle of a process object, representing the process to which the virtual memory
should be written.The handle must grant PROCESS_VM_WRITE access.

BaseAddress
The base address of the virtual memory to write.

1996 Ch03 11/19/99 12:25 PM Page 90

Virtual Memory: ZwProtectVirtualMemory 91

Buffer
Points to a caller-allocated buffer or variable that specifies the contents of the virtual
memory.

BufferLength
Specifies the size in bytes of Buffer and the number of bytes of virtual memory to
write.

ReturnLength
Optionally points to a variable that receives the number of bytes actually read from
Buffer if the call was successful. If this information is not needed, ReturnLength may
be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_VIOLATION or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
WriteProcessMemory.

Remarks
WriteProcessMemory exposes the full functionality of ZwWriteVirtualMemory.
WriteProcessMemory tries to modify the protection on the virtual memory to ensure
that write access is granted and flushes the instruction cache after the write (by calling
ZwFlushInstructionCache).

ZwProtectVirtualMemory

ZwProtectVirtualMemory changes the protection on virtual memory in the user mode
address range.
NTSYSAPI
NTSTATUS
NTAPI
ZwProtectVirtualMemory(

IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG ProtectSize,
IN ULONG NewProtect,
OUT PULONG OldProtect
);

Parameters

ProcessHandle
A handle of a process object, representing the process for which the virtual memory
protection is to be changed.The handle must grant PROCESS_VM_OPERATION access.

1996 Ch03 11/19/99 12:25 PM Page 91

Virtual Memory: ZwProtectVirtualMemory92

BaseAddress
Points to a variable that specifies the base address of the virtual memory to protect,
and receives the size of virtual memory actually protected.

ProtectSize
Points to a variable that specifies the size, in bytes, of the virtual memory to protect,
and receives the size of virtual memory actually protected.

NewProtect
The new access protection. Permitted values are drawn from the following list, possibly
combined with PAGE_GUARD or PAGE_NOCACHE.

PAGE_NOACCESS
PAGE_READONLY
PAGE_READWRITE
PAGE_WRITECOPY
PAGE_EXECUTE
PAGE_EXECUTE_READ
PAGE_EXECUTE_READWRITE
PAGE_EXECUTE_WRITECOPY

OldProtect
Points to a variable that receives the previous access protection of the first page in the
specified region of pages.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_NOT_COMMITTED or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
VirtualProtect, VirtualProtectEx.

Remarks
VirtualProtectEx exposes almost all of the functionality of
ZwProtectVirtualMemory.

ZwFlushVirtualMemory

ZwFlushVirtualMemory flushes virtual memory in the user mode address range that is
mapped to a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwFlushVirtualMemory(

IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG FlushSize,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

1996 Ch03 11/19/99 12:25 PM Page 92

Virtual Memory: ZwAllocateUserPhysicalPages 93

Parameters

ProcessHandle
A handle of a process object, representing the process for which the virtual memory
should be flushed.The handle must grant PROCESS_VM_OPERATION access.

BaseAddress
Points to a variable that specifies the base address of the virtual memory to flush, and
receives the size of virtual memory actually flushed.The address should refer to a
region backed by a file data section.

FlushSize
Points to a variable that specifies the size, in bytes, of the virtual memory to flush, and
receives the size of virtual memory actually flushed. If the initial value of FlushSize is
zero, the virtual memory is flushed from the BaseAddress to the end of the section.

IoStatusBlock
Points to a variable that receives the status of the I/O operation (if any) needed to
flush the virtual memory to its backing file.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_NOT_MAPPED_DATA or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
FlushViewOfFile.

Remarks
None.

ZwAllocateUserPhysicalPages

ZwAllocateUserPhysicalPages allocates pages of physical memory.
NTSYSAPI
NTSTATUS
NTAPI
ZwAllocateUserPhysicalPages(

IN HANDLE ProcessHandle,
IN PULONG NumberOfPages,
OUT PULONG PageFrameNumbers
);

Parameters

ProcessHandle
A handle of a process object, representing the process for which the pages of physical
memory should be allocated.The handle must grant PROCESS_VM_OPERATION access.

1996 Ch03 11/19/99 12:25 PM Page 93

Virtual Memory: ZwAllocateUserPhysicalPages94

NumberOfPages
Points to a variable that specifies the number of pages of physical memory to allocate.

PageFrameNumbers
Points to a caller-allocated buffer or variable that receives the page frame numbers of
the allocated pages.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
AllocateUserPhysicalPages.

Remarks
SeLockMemoryPrivilege is required to allocate pages of physical memory.

AllocateUserPhysicalPages exposes the full functionality of
ZwAllocateUserPhysicalPages.

AllocateUserPhysicalPages is part of the “Address Windowing Extensions” (AWE)
API, which allows applications to use up to 64GB of physical non-paged memory in a
32-bit virtual address space. On the Intel platform, the Physical Address Extension
(PAE) flag in the CR4 register is set (at boot time) to enable 36-bit physical addressing
if the system has more than 4GB of physical memory.

The routine ZwAllocateUserPhysicalPages is only present in Windows 2000.

ZwFreeUserPhysicalPages

ZwFreeUserPhysicalPages frees pages of physical memory.
NTSYSAPI
NTSTATUS
NTAPI
ZwFreeUserPhysicalPages(

IN HANDLE ProcessHandle,
IN OUT PULONG NumberOfPages,
IN PULONG PageFrameNumbers
);

Parameters

ProcessHandle
A handle of a process object, representing the process for which the pages of physical
memory should be freed.The handle must grant PROCESS_VM_OPERATION access.

NumberOfPages
Points to a variable that specifies the number of pages of physical memory to free, and
receives the number of pages actually freed.

1996 Ch03 11/19/99 12:25 PM Page 94

Virtual Memory: ZwMapUserPhysicalPages 95

PageFrameNumbers
Points to a caller-allocated buffer or variable that contains the page frame numbers of
the pages to be freed.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_CONFLICTING_ADDRESSES
or STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
FreeUserPhysicalPages.

Remarks
FreeUserPhysicalPages exposes the full functionality of ZwFreeUserPhysicalPages.

The routine ZwFreeUserPhysicalPages is only present in Windows 2000.

ZwMapUserPhysicalPages

ZwMapUserPhysicalPages maps pages of physical memory into a physical memory
view.
NTSYSAPI
NTSTATUS
NTAPI
ZwMapUserPhysicalPages(

IN PVOID BaseAddress,
IN PULONG NumberOfPages,
IN PULONG PageFrameNumbers
);

Parameters

BaseAddress
The address within a physical memory view at which to map the physical mem-
ory.The address is rounded down to the nearest page boundary if necessary.A physical
memory view is created by calling ZwAllocateVirtualMemory with an
AllocationType of MEM_PHYSICAL | MEM_RESERVE.

NumberOfPages
Points to a variable that specifies the number of pages of physical memory to map.

PageFrameNumbers
Points to a caller-allocated buffer or variable that contains the page frame numbers of
the pages to be mapped. If PageFrameNumbers is a null pointer, the physical memory
mapped at BaseAddresses is unmapped.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_CONFLICTING_ADDRESSES
or STATUS_PROCESS_IS_TERMINATING.

1996 Ch03 11/19/99 12:25 PM Page 95

Virtual Memory: ZwMapUserPhysicalPages96

Related Win32 Functions
MapUserPhysicalPages.

Remarks
MapUserPhysicalPages exposes the full functionality of ZwMapUserPhysicalPages.

The routine ZwMapUserPhysicalPages is only present in Windows 2000.

The physical pages must have been previously allocated by
ZwAllocateUserPhysicalPages.

For unknown reasons, ZwMapUserPhysicalPages does not provide for specifying the
process for which the mapping is to be performed; this is in contrast to all the other
related routines, which do allow a process to be specified.

ZwMapUserPhysicalPagesScatter

ZwMapUserPhysicalPagesScatter maps pages of physical memory into a physical mem-
ory view.
NTSYSAPI
NTSTATUS
NTAPI
ZwMapUserPhysicalPagesScatter(

IN PVOID *BaseAddresses,
IN PULONG NumberOfPages,
IN PULONG PageFrameNumbers
);

Parameters

BaseAddress
Points to a caller-allocated buffer or variable that contains an array of the virtual
addresses (within a physical memory view) at which to map the physical memory.
The virtual addresses are rounded down to the nearest page boundary if necessary.
A physical memory view is created by calling ZwAllocateVirtualMemory with an
AllocationType of MEM_PHYSICAL | MEM_RESERVE.

NumberOfPages
Points to a variable that specifies the number of pages of physical memory to map.

PageFrameNumbers
Points to a caller-allocated buffer or variable that contains the page frame numbers of
the pages to be mapped. If PageFrameNumbers is a null pointer, the physical memory
mapped at BaseAddresses is unmapped.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_CONFLICTING_ADDRESSES
or STATUS_PROCESS_IS_TERMINATING.

1996 Ch03 11/19/99 12:25 PM Page 96

Virtual Memory: ZwGetWriteWatch 97

Related Win32 Functions
MapUserPhysicalPagesScatter.

Remarks
MapUserPhysicalPagesScatter exposes the full functionality of
ZwMapUserPhysicalPagesScatter.

The routine ZwMapUserPhysicalPagesScatter is only present in Windows 2000.

The physical pages must have been previously allocated by
ZwAllocateUserPhysicalPages.

ZwGetWriteWatch

ZwGetWriteWatch retrieves the addresses of pages that have been written to in a region
of virtual memory.
NTSYSAPI
NTSTATUS
NTAPI
ZwGetWriteWatch(

IN HANDLE ProcessHandle,
IN ULONG Flags,
IN PVOID BaseAddress,
IN ULONG RegionSize,
OUT PULONG Buffer,
IN OUT PULONG BufferEntries,
OUT PULONG Granularity
);

Parameters

ProcessHandle
A handle of a process object, representing the process from which the virtual memory
write watch information should be retrieved.The handle must grant
PROCESS_VM_OPERATION access.

Flags
A bit array of flags.The defined values include:

WRITE_WATCH_RESET_FLAG 0x01 // Reset the write watch information

BaseAddress
The base address of the region of memory for which the write watch information is
to be retrieved.

RegionSize
The size, in bytes, of the region of memory for which the write watch information is
to be retrieved.

1996 Ch03 11/19/99 12:25 PM Page 97

Virtual Memory: ZwGetWriteWatch98

Buffer
Points to a caller-allocated buffer or variable that receives an array of page addresses in
the region of memory that have been written to since the region was allocated or the
write watch information was reset.

BufferEntries
Points to a variable that specifies the maximum number of page addresses to return
and receives the actual number of page addresses returned.

Granularity
Points to a variable that receives the granularity, in bytes, of the write detection.This is
normally the size of a physical page.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PROCESS_IS_TERMINATING,
STATUS_INVALID_PARAMETER_1, STATUS_INVALID_PARAMETER_2,
STATUS_INVALID_PARAMETER_3, or STATUS_INVALID_PARAMETER_5.

Related Win32 Functions
GetWriteWatch.

Remarks
GetWriteWatch most of the functionality of ZwGetWriteWatch.

The routine ZwGetWriteWatch is only present in Windows 2000.

ZwResetWriteWatch

ZwResetWriteWatch resets the virtual memory write watch information for a region of
virtual memory.
NTSYSAPI
NTSTATUS
NTAPI
ZwResetWriteWatch(

IN HANDLE ProcessHandle,
IN PVOID BaseAddress,
IN ULONG RegionSize
);

Parameters

ProcessHandle
A handle of a process object, representing the process for which the virtual
memory write watch information should be reset.The handle must grant
PROCESS_VM_OPERATION access.

BaseAddress
The base address of the region of memory for which the write watch information is
to be reset.

1996 Ch03 11/19/99 12:25 PM Page 98

Virtual Memory: ZwResetWriteWatch 99

RegionSize
The size, in bytes, of the region of memory for which the write watch information is
to be reset.

Return Value
Returns STATUS_SUCCESS or an error status, such as
STATUS_PROCESS_IS_TERMINATING, STATUS_INVALID_PARAMETER_1,
STATUS_INVALID_PARAMETER_2, or STATUS_INVALID_PARAMETER_3

Related Win32 Functions
ResetWriteWatch.

Remarks
ResetWriteWatch most of the functionality of ZwResetWriteWatch.

The routine ZwResetWriteWatch is only present in Windows 2000.

1996 Ch03 11/19/99 12:25 PM Page 99

1996 Ch03 11/19/99 12:25 PM Page 100

4
Sections

The system services described in this chapter create and manipulate section objects.
Section objects are objects that can be mapped into the virtual address space of a process.
The Win32 API refers to section objects as file-mapping objects.

ZwCreateSection

ZwCreateSection creates a section object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateSection(

OUT PHANDLE SectionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PLARGE_INTEGER SectionSize OPTIONAL,
IN ULONG Protect,
IN ULONG Attributes,
IN HANDLE FileHandle
);

Parameters

SectionHandle
Points to a variable that will receive the section object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the section object.This parame-
ter can be zero, or any combination of the following flags:

SECTION_QUERY Query access
SECTION_MAP_WRITE Can be written when mapped
SECTION_MAP_READ Can be read when mapped
SECTION_MAP_EXECUTE Can be executed when mapped
SECTION_EXTEND_SIZE Extend access
SECTION_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

1996 Ch04 11/19/99 12:26 PM Page 101

Sections: ZwCreateSection102

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for a section object.

SectionSize
Optionally points to a variable that specifies the size, in bytes, of the section. If
FileHandle is zero, the size must be specified; otherwise, it can be defaulted from the
size of the file referred to by FileHandle.

Protect
The protection desired for the pages of the section when the section is mapped.
This parameter can take one of the following values:

PAGE_READONLY
PAGE_READWRITE
PAGE_WRITECOPY
PAGE_EXECUTE
PAGE_EXECUTE_READ
PAGE_EXECUTE_READWRITE
PAGE_EXECUTE_WRITECOPY

Attributes
The attributes for the section.This parameter be a combination of the following
values:

SEC_BASED 0x00200000 // Map section at same address in each process
SEC_NO_CHANGE 0x00400000 // Disable changes to protection of pages
SEC_IMAGE 0x01000000 // Map section as an image
SEC_VLM 0x02000000 // Map section in VLM region
SEC_RESERVE 0x04000000 // Reserve without allocating pagefile storage
SEC_COMMIT 0x08000000 // Commit pages; the default behavior
SEC_NOCACHE 0x10000000 // Mark pages as non-cacheable

FileHandle
Identifies the file from which to create the section object.The file must be opened
with an access mode compatible with the protection flags specified by the Protect
parameter. If FileHandle is zero, the function creates a section object of the specified
size backed by the paging file rather than by a named file in the file system.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_FILE_FOR_SECTION, STATUS_FILE_LOCK_CONFLICT,
STATUS_MAPPED_FILE_SIZE_ZERO, STATUS_INVALID_PAGE_PROTECTION,
STATUS_INVALID_IMAGE_FORMAT, STATUS_INCOMPATIBLE_FILE_MAP,
STATUS_OBJECT_NAME_EXISTS, or STATUS_OBJECT_NAME_COLLISION.

Related Win32 Functions
CreateFileMapping.

1996 Ch04 11/19/99 12:26 PM Page 102

Sections: ZwOpenSection 103

Remarks
CreateFileMapping exposes almost all of the functionality of ZwCreateSection.The
main missing features are the ability to specify the attributes SEC_BASED and
SEC_NO_CHANGE, and the access SECTION_EXTEND. It is also not possible to specify the
access SECTION_EXECUTE and the related PAGE_EXECUTE_Xxx protections.

SEC_VLM is only valid in Windows 2000 and is not implemented on the Intel platform.

ZwOpenSection

ZwOpenSection opens a section object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenSection(

OUT PHANDLE SectionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

SectionHandle
Points to a variable that will receive the section object handle if the call is successful.

DesiredAccess
The type of access that the caller requires to the section object.This parameter can be
zero, or any combination of the following flags:

SECTION_QUERY Query access
SECTION_MAP_WRITE Can be written when mapped
SECTION_MAP_READ Can be read when mapped
SECTION_MAP_EXECUTE Can be executed when mapped
SECTION_EXTEND_SIZE Extend access
SECTION_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for a section object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
OpenFileMapping.

Remarks
ZwOpenSection is documented in the DDK.

1996 Ch04 11/19/99 12:26 PM Page 103

Sections: ZwOpenSection104

The DDK does not define all the access types listed above.

OpenFileMapping exposes almost all of the functionality of ZwOpenSection.

In addition to opening sections created by ZwCreateSection, ZwOpenSection can also
open the section named “\Device\PhysicalMemory,” which is backed by the physical
memory of the system.

ZwQuerySection

ZwQuerySection retrieves information about a section object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySection(

IN HANDLE SectionHandle,
IN SECTION_INFORMATION_CLASS SectionInformationClass,
OUT PVOID SectionInformation,
IN ULONG SectionInformationLength,
OUT PULONG ResultLength OPTIONAL
);

Parameters

SectionHandle
A handle to a section object.The handle must grant SECTION_QUERY access.

SectionInformationClass
Specifies the type of section object information to be queried.The permitted values
are drawn from the enumeration SECTION_INFORMATION_CLASS, described in the
following section.

SectionInformation
Points to a caller-allocated buffer or variable that receives the requested section object
information.

SectionInformationLength
Specifies the size in bytes of SectionInformation, which the caller should set accord-
ing to the given SectionInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
SectionInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS,
STATUS_INFO_LENGTH_MISMATCH, or STATUS_SECTION_NOT_IMAGE.

1996 Ch04 11/19/99 12:26 PM Page 104

Sections: SectionBasicInformation 105

Related Win32 Functions
None.

Remarks
None.

SECTION_INFORMATION_CLASS
typedef enum _SECTION_INFORMATION_CLASS {

SectionBasicInformation,
SectionImageInformation

} SECTION_INFORMATION_CLASS;

SectionBasicInformation
typedef struct _SECTION_BASIC_INFORMATION { // Information Class 0

PVOID BaseAddress;
ULONG Attributes;
LARGE_INTEGER Size;

} SECTION_BASIC_INFORMATION, *PSECTION_BASIC_INFORMATION;

Members

BaseAddress
If the section is a based section, BaseAddress contains the base address of the
section; otherwise, it contains zero.

Attributes
A bit array of flags that specify properties of the section object.The possible flags are:

SEC_BASED 0x00200000 // Section should be mapped at same address in each
process

SEC_NO_CHANGE 0x00400000 // Changes to protection of section pages are
disabled

SEC_FILE 0x00800000 // Section is backed by a file
SEC_IMAGE 0x01000000 // Section is mapped as an image
SEC_VLM 0x02000000 // Section maps VLM
SEC_RESERVE 0x04000000 // Section pages are reserved
SEC_COMMIT 0x08000000 // Section pages are committed
SEC_NOCACHE 0x10000000 // Section pages are non-cacheable

Size
The size in bytes of the section.

Remarks
None.

1996 Ch04 11/19/99 12:26 PM Page 105

Sections: SectionImageInformation106

SectionImageInformation
typedef struct _SECTION_IMAGE_INFORMATION { // Information Class 1

PVOID EntryPoint;
ULONG Unknown1;
ULONG StackReserve;
ULONG StackCommit;
ULONG Subsystem;
USHORT MinorSubsystemVersion;
USHORT MajorSubsystemVersion;
ULONG Unknown2;
ULONG Characteristics;
USHORT ImageNumber;
BOOLEAN Executable;
UCHAR Unknown3;
ULONG Unknown4[3];

} SECTION_IMAGE_INFORMATION, *PSECTION_IMAGE_INFORMATION;

Members

EntryPoint
The entry point of the image.

Unknown1
Normally contains zero; interpretation unknown.

StackReserve
The default amount of stack to reserve when creating the initial thread to execute
this image section.The value is copied from the image header (IMAGE_OPTIONAL_
HEADER.SizeOfStackReserve).

StackCommit
The default amount of stack to commit when creating the initial thread to execute
this image section.The value is copied from the image header (IMAGE_OPTIONAL_
HEADER.SizeOfStackCommit).

Subsystem
The subsystem under which the process created from this image section should run.
The value is copied from the image header (IMAGE_OPTIONAL_HEADER.Subsystem).

MinorSubsystemVersion
The minor version number of the subsystem for which the image was built.The value
is copied from the image header (IMAGE_OPTIONAL_HEADER.MinorSubsystemVersion).

MajorSubsystemVersion
The major version number of the subsystem for which the image was built.The value
is copied from the image header (IMAGE_OPTIONAL_HEADER.MinorSubsystemVersion).

Unknown2
Normally contains zero; interpretation unknown.

1996 Ch04 11/19/99 12:26 PM Page 106

Sections: ZwExtendSection 107

Characteristics
A bit array of flags that specify properties of the image file.The value is copied from
the image header (IMAGE_FILE_HEADER.Characteristics).

ImageNumber
The type of target machine on which the image will run.The value is copied from the
image header (IMAGE_FILE_HEADER.Machine).

Executable
A boolean indicating whether the image file contains any executable code.The value is
derived from the image header (IMAGE_OPTIONAL_HEADER.SizeOfCode != 0).

Unknown3
Normally contains zero; interpretation unknown.

Unknown4
Normally contains zero; interpretation unknown.

Remarks
The information class SectionImageInformation is valid only for image sections
(sections for which SEC_IMAGE was specified as an attribute to ZwCreateSection).

ZwExtendSection
ZwExtendSection extends a file backed data section.
NTSYSAPI
NTSTATUS
NTAPI
ZwExtendSection(

IN HANDLE SectionHandle,
IN PLARGE_INTEGER SectionSize
);

Parameters

SectionHandle
A handle to a section object. The handle must grant SECTION_EXTEND_SIZE access.

SectionSize
Points to a variable that contains the new size, in bytes, of the section.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE,
STATUS_ACCESS_DENIED, or STATUS_SECTION_NOT_EXTENDED.

Related Win32 Functions
None.

1996 Ch04 11/19/99 12:26 PM Page 107

Sections: ZwMapViewOfSection108

Remarks
ZwExtendSection only extends data sections backed by a file.

ZwMapViewOfSection

ZwMapViewOfSection maps a view of a section to a range of virtual addresses.
NTSYSAPI
NTSTATUS
NTAPI
ZwMapViewOfSection(

IN HANDLE SectionHandle,
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN ULONG ZeroBits,
IN ULONG CommitSize,
IN OUT PLARGE_INTEGER SectionOffset OPTIONAL,
IN OUT PULONG ViewSize,
IN SECTION_INHERIT InheritDisposition,
IN ULONG AllocationType,
IN ULONG Protect
);

Parameters

SectionHandle
A handle to the section object that is to be mapped.The handle must grant access
compatible with the Protect parameter, which specifies the protection on the pages
that map the section.

ProcessHandle
A handle of an process object, representing the process for which the view should be
mapped.The handle must grant PROCESS_VM_OPERATION access.

BaseAddress
Points to a variable that will receive the base address of the view. If the initial value of
this variable is not null, the view is allocated starting at the specified address, possibly
rounded down.

ZeroBits
Specifies the number of high-order address bits that must be zero in the base address
of the section view.The value of this parameter must be less than 21 and is used only
when the operating system determines where to allocate the view, such as when
BaseAddress is null.

CommitSize
Specifies the size, in bytes, of the initially committed region of the view. CommitSize is
only meaningful for page-file backed sections; file backed sections, both data and
image, are effectively committed at section creation time.This value is rounded up to
the next page size boundary.

1996 Ch04 11/19/99 12:26 PM Page 108

Sections: ZwMapViewOfSection 109

SectionOffset
Optionally points to a variable that contains the offset, in bytes, from the beginning of
the section to the view, possibly rounded down.

ViewSize
Points to a variable that will receive the actual size, in bytes, of the view. If the initial
value of this variable is zero, a view of the section will be mapped starting at the speci-
fied section offset and continuing to the end of the section. Otherwise, the initial value
of this parameter specifies the size of the view, in bytes, and is rounded up to the next
page size boundary.

InheritDispostion
Specifies how the view is to be shared by a child process created with a create process
operation. Permitted values are drawn from the enumeration SECTION_INHERIT.

typedef enum _SECTION_INHERIT {
ViewShare = 1,
ViewUnmap = 2

} SECTION_INHERIT;

AllocationType
A set of flags that describes the type of allocation to be performed for the specified
region of pages.The permitted values include:

AT_EXTENDABLE_FILE 0x00002000 // Allow view to exceed section size
MEM_TOP_DOWN 0x00100000 // Allocate at highest possible address
SEC_NO_CHANGE 0x00400000 // Disable changes to protection of pages
AT_RESERVED 0x20000000 // Valid but ignored
AT_ROUND_TO_PAGE 0x40000000 // Adjust address and size if necessary

Protect
Specifies the protection for the region of initially committed pages.The protection
must be compatible with the protection specified when the section was created. (The
protection can be more but not less restrictive.)

Return Value
Returns STATUS_SUCCESS, STATUS_IMAGE_NOT_AT_BASE,
STATUS_IMAGE_MACHINE_TYPE_MISMATCH or an error status, such as
STATUS_INVALID_HANDLE, STATUS_ACCESS_DENIED, STATUS_CONFLICTING_ADDRESSES,
STATUS_INVALID_VIEW_SIZE, STATUS_MAPPED_ALIGNMENT, or STATUS_PROCESS_IS_
TERMINATING.

Related Win32 Functions
MapViewOfFile, MapViewOfFileEx.

Remarks
ZwMapViewOfSection is documented in the DDK.

When mapping “\Device\PhysicalMemory”, the BaseAddress and SectionOffset are
rounded down to the next page boundary.When mapping pagefile and data sections,
BaseAddress and SectionOffset must be aligned with the system’s allocation granu-
larity unless the AllocationType flags include AT_ROUND_TO_PAGE. In which case, they
are rounded down to the next page boundary.

1996 Ch04 11/19/99 12:26 PM Page 109

Sections: ZwMapViewOfSection110

The AllocationType flag AT_EXTENDABLE_FILE is only present in Windows 2000 and
is only valid for data sections backed by a file mapped with PAGE_READWRITE or
PAGE_EXECUTE_READWRITE protection. Changes to data within the view but beyond the
size of the backing file are not permanently stored unless the section (and implicitly
the backing file) is extended with ZwExtendSection to encompass the changes.

ZwUnmapViewOfSection

ZwUnmapViewOfSection unmaps a view of a section.
NTSYSAPI
NTSTATUS
NTAPI
ZwUnmapViewOfSection(

IN HANDLE ProcessHandle,
IN PVOID BaseAddress
);

Parameters

ProcessHandle
A handle of an process object, representing the process for which the view should be
unmapped.The handle must grant PROCESS_VM_OPERATION access.

BaseAddress
The base address of the view that is to be unmapped.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_NOT_MAPPED_VIEW, or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
UnmapViewOfFile.

Remarks
ZwUnmapViewOfSection is documented in the DDK.

ZwAreMappedFilesTheSame

ZwAreMappedFilesTheSame tests whether two pointers refer to image sections backed
by the same file.
NTSYSAPI
NTSTATUS
NTAPI
ZwAreMappedFilesTheSame(

IN PVOID Address1,
IN PVOID Address2
);

1996 Ch04 11/19/99 12:26 PM Page 110

Sections: ZwAreMappedFilesTheSame 111

Parameters

Address1
A virtual address mapped to an image section.

Address2
A virtual address mapped to an image section.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_ADDRESS,
STATUS_CONFLICTING_ADDRESSES, or STATUS_NOT_SAME_DEVICE.

Related Win32 Functions
None.

Remarks
The routine ZwAreMappedFilesTheSame is only present in Windows 2000.

If the two pointers refer to image sections backed by the same file then
ZwAreMappedFilesTheSame returns STATUS_SUCCESS; otherwise, it returns an error status.

1996 Ch04 11/19/99 12:26 PM Page 111

1996 Ch04 11/19/99 12:26 PM Page 112

5
Threads

The system services described in this chapter create and manipulate thread objects.

ZwCreateThread

ZwCreateThread creates a thread in a process.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateThread(

OUT PHANDLE ThreadHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN HANDLE ProcessHandle,
OUT PCLIENT_ID ClientId,
IN PCONTEXT ThreadContext,
IN PUSER_STACK UserStack,
IN BOOLEAN CreateSuspended
);

Parameters

ThreadHandle
Points to a variable that will receive the thread object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the thread object.This parameter
can be zero or any combination of the following flags:

THREAD_TERMINATE Terminate thread
THREAD_SUSPEND_RESUME Suspend or resume thread
THREAD_ALERT Alert thread
THREAD_GET_CONTEXT Get thread context
THREAD_SET_CONTEXT Set thread context
THREAD_SET_INFORMATION Set thread information
THREAD_QUERY_INFORMATION Get thread information
THREAD_SET_THREAD_TOKEN Set thread token
THREAD_IMPERSONATE Allow thread to impersonate
THREAD_DIRECT_IMPERSONATION Allow thread token to be impersonated
THREAD_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_ALL

1996 Ch05 11.24.99 09:53 Page 113

Threads: ZwCreateThread114

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_PERMANENT,
OBJ_EXCLUSIVE and OBJ_OPENIF are not valid attributes for a thread object.

ProcessHandle
A handle to the process in which the thread is to be created.The handle must
grant PROCESS_CREATE_THREAD access.

ClientId
Points to a variable that will receive the thread and process identifiers if the call is suc-
cessful.

ThreadContext
Points to a structure that specifies the initial values of the processor registers for the
thread.

UserStack
Points to a structure that specifies the user mode stack of the thread.

CreateSuspended
A boolean specifying whether the thread should be created suspended or should be
immediately allowed to begin execution.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, or STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
CreateThread, CreateRemoteThread.

Remarks
Practical examples of creating a thread using ZwCreateThread appear in Chapter 6.1,
“Processes,” in Examples 6.1 and 6.2.

The USER_STACK structure is defined as follows:
typedef struct _USER_STACK {

PVOID FixedStackBase;
PVOID FixedStackLimit;
PVOID ExpandableStackBase;
PVOID ExpandableStackLimit;
PVOID ExpandableStackBottom;

} USER_STACK, *PUSER_STACK;

Members

FixedStackBase
A pointer to the base of a fixed-size stack.

1996 Ch05 11.24.99 09:53 Page 114

Threads: ZwOpenThread 115

FixedStackLimit
A pointer to the limit (that is, top) of a fixed-size stack.

ExpandableStackBase
A pointer to the base of the committed memory of an expandable stack.

ExpandableStackLimit
A pointer to the limit (that is, top) of the committed memory of an expandable stack.

ExpandableStackBottom
A pointer to the bottom of the reserved memory of an expandable stack.

Remarks
If FixedStackBase or FixedStackLimit are not null, they are used to delimit the ini-
tial stack of the thread; otherwise ExpandableStackBase and ExpandableStackLimit
are used. Example 6.2 in Chapter 6 demonstrates how to initialize this structure.

ZwOpenThread

ZwOpenThread opens a thread object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenThread(

OUT PHANDLE ThreadHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PCLIENT_ID ClientId
);

Parameters

ThreadHandle
Points to a variable that will receive the thread object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the thread object.This parameter
can be zero, or any combination of the following flags:

THREAD_TERMINATE Terminate thread
THREAD_SUSPEND_RESUME Suspend or resume thread
THREAD_ALERT Alert thread
THREAD_GET_CONTEXT Get thread context
THREAD_SET_CONTEXT Set thread context
THREAD_SET_INFORMATION Set thread information
THREAD_QUERY_INFORMATION Get thread information
THREAD_SET_THREAD_TOKEN Set thread token
THREAD_IMPERSONATE Allow thread to impersonate
THREAD_DIRECT_IMPERSONATION Allow thread token to be impersonated
THREAD_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_ALL

1996 Ch05 11.24.99 09:53 Page 115

Threads: ZwOpenThread116

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_PERMANENT,
OBJ_EXCLUSIVE and OBJ_OPENIF are not valid attributes for a thread object.

ClientId
Optionally points to a structure that contains optionally the process identifier
(UniqueProcess) and the identifier of a thread in the process (UniqueThread).

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_NOT_FOUND, STATUS_INVALID_PARAMETER_MIX, or
STATUS_INVALID_PARAMETER.

Related Win32 Functions
OpenThread.

Remarks
Thread objects can be given names in the same way as other objects.

The thread to be opened is identified either by ObjectAttributes, ObjectName, or
ClientId; it is an error to specify both.

If ClientId.UniqueProcess is not zero, it must be the identifier of the process in
which the thread resides.

If the caller has SeDebugPrivilege, the check of whether the caller is granted access
to the thread by its ACL is bypassed, (This behavior can be disabled under Windows
NT 4.0 by setting the NtGlobalFlag FLG_IGNORE_DEBUG_PRIV.)

ZwTerminateThread

ZwTerminateThread terminates a thread.
NTSYSAPI
NTSTATUS
NTAPI
ZwTerminateThread(

IN HANDLE ThreadHandle OPTIONAL,
IN NTSTATUS ExitStatus
);

Parameters

ThreadHandle
A handle to a thread object.The handle must grant THREAD_TERMINATE access. If this
value is zero, the current thread is terminated.

ExitStatus
Specifies the exit status for the thread.

1996 Ch05 11.24.99 09:53 Page 116

Threads: ZwQueryInformationThread 117

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_CANT_TERMINATE_SELF.

Related Win32 Functions
TerminateThread, ExitThread.

Remarks
TerminateThread exposes the full functionality of ZwTerminateThread.

The current thread can be terminated by calling ZwTerminateThread with a thread
handle of either zero or NtCurrentThread(). If the thread is the last thread in the
process and ThreadHandle is zero, the error status STATUS_CANT_TERMINATE_SELF is
returned.

ZwTerminateThread does not deallocate the initial stack of the thread because
ZwCreateThread did not allocate it.The initial stack can be explicitly de-allocated (by
calling ZwFreeVirtualMemory) after the thread has been terminated (when the thread
object becomes signalled).

ZwQueryInformationThread

ZwQueryInformationThread retrieves information about a thread object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryInformationThread(

IN HANDLE ThreadHandle,
IN THREADINFOCLASS ThreadInformationClass,
OUT PVOID ThreadInformation,
IN ULONG ThreadInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

ThreadHandle
A handle to a thread object.The handle must grant THREAD_QUERY_INFORMATION
access.

ThreadInformationClass
Specifies the type of thread information to be queried.The permitted values are drawn
from the enumeration THREADINFOCLASS, described in the section
“THREADINFOCLASS”.

ThreadInformation
Points to a caller-allocated buffer or variable that receives the requested thread
information.

1996 Ch05 11.24.99 09:53 Page 117

Threads: ZwQueryInformationThread118

ThreadInformationLength
Specifies the size in bytes of ThreadInformation, which the caller should set according
to the given ThreadInformationClass.

ReturnLength
Optionally points to a variable, which receives the number of bytes actually returned
to ThreadInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or
STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
GetThreadPriority, GetThreadPriorityBoost, GetThreadTimes, GetExitCodeThread,
GetThreadSelectorEntry.

Remarks
None.

ZwSetInformationThread

ZwSetInformationThread sets information affecting a thread object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetInformationThread(

IN HANDLE ThreadHandle,
IN THREADINFOCLASS ThreadInformationClass,
IN PVOID ThreadInformation,
IN ULONG ThreadInformationLength
);

Parameters

ThreadHandle
A handle to a thread object.The handle must grant THREAD_QUERY_INFORMATION
access. Some information classes also require THREAD_SET_THREAD_TOKEN access.

ThreadInformationClass
Specifies the type of thread information to be set.The permitted values are drawn
from the enumeration THREADINFOCLASS, described in the following section.

ThreadInformation
Points to a caller-allocated buffer or variable that contains the thread information to
be set.

1996 Ch05 11.24.99 09:53 Page 118

Threads: ThreadBasicInformation 119

ThreadInformationLength
Specifies the size in bytes of ThreadInformation, which the caller should set according
to the given ThreadInformationClass.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS,
STATUS_INFO_LENGTH_MISMATCH, or STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
SetThreadAffinityMask, SetThreadIdealProcessor, SetThreadPriority, and
SetThreadPriorityBoost.

Remarks
None.

THREADINFOCLASS
Query Set

typedef enum _THREADINFOCLASS {
ThreadBasicInformation, // 0 Y N
ThreadTimes, // 1 Y N
ThreadPriority, // 2 N Y
ThreadBasePriority, // 3 N Y
ThreadAffinityMask, // 4 N Y
ThreadImpersonationToken, // 5 N Y
ThreadDescriptorTableEntry, // 6 Y N
ThreadEnableAlignmentFaultFixup, // 7 N Y
ThreadEventPair, // 8 N Y
ThreadQuerySetWin32StartAddress, // 9 Y Y
ThreadZeroTlsCell, // 10 N Y
ThreadPerformanceCount, // 11 Y N
ThreadAmILastThread, // 12 Y N
ThreadIdealProcessor, // 13 N Y
ThreadPriorityBoost, // 14 Y Y
ThreadSetTlsArrayAddress, // 15 N Y
ThreadIsIoPending, // 16 Y N
ThreadHideFromDebugger // 17 N Y

} THREADINFOCLASS;

ThreadBasicInformation
typedef struct _THREAD_BASIC_INFORMATION { // Information Class 0

NTSTATUS ExitStatus;
PNT_TIB TebBaseAddress;
CLIENT_ID ClientId;
KAFFINITY AffinityMask;
KPRIORITY Priority;
KPRIORITY BasePriority;

} THREAD_BASIC_INFORMATION, *PTHREAD_BASIC_INFORMATION;

1996 Ch05 11.24.99 09:53 Page 119

Threads: ThreadBasicInformation120

Members

ExitStatus
The exit status of the thread. If the process has not exited, this member normally
contains STATUS_SUCCESS.

TebBaseAddress
The base address of the Thread Environment Block.

ClientIdentifier
The thread identifier and the identifier of the process in which the thread resides.

AffinityMask
The processor affinity mask of the thread.

Priority
The current priority of the thread.

BasePriority
The base priority of the thread.

Remarks
None.

ThreadTimes
typedef struct _KERNEL_USER_TIMES { // Information Class 1

LARGE_INTEGER CreateTime;
LARGE_INTEGER ExitTime;
LARGE_INTEGER KernelTime;
LARGE_INTEGER UserTime;

} KERNEL_USER_TIMES, *PKERNEL_USER_TIMES;

Members

CreateTime
The creation time of the thread in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

ExitTime
The exit time of the thread in the standard time format (that is, the number of 100-
nanosecond intervals since January 1, 1601). For threads which have not exited, this
value is zero.

KernelTime
The time spent executing in kernel mode by the thread, measured in units of 100-
nanoseconds.

1996 Ch05 11.24.99 09:53 Page 120

Threads: ThreadEnableAlignmentFaultFixup 121

UserTime
The time spent executing in user mode by the thread, measured in units of 100-
nanoseconds.

Remarks
None.

ThreadPriority
KPRIORITY Priority; // Information Class 2

This information class can only be set. It sets the priority of the thread. Priority should
be a valid priority value (that is, a value in the range 1 to 31).

ThreadBasePriority
LONG BasePriority; // Information Class 3

This information class can only be set. It sets the base priority of the thread.
BasePriority is interpreted as a delta with respect to the current base priority; it can
be positive or negative.

ThreadAffinityMask
KAFFINITY AffinityMask; // Information Class 4

This information class can only be set. It sets the processor affinity mask for the thread.

ThreadImpersonationToken
HANDLE ImpersonationToken; // Information Class 5

This information class can only be set. It sets the impersonation token of the thread.
ImpersonationToken should either be a handle to an impersonation token granting
TOKEN_IMPERSONATE access, or zero to terminate the impersonation.

ThreadEnableAlignmentFaultFixup
BOOLEAN EnableAlignmentFaultFixup; // Information Class 7

This information class can only be set. It sets a flag in the thread indicating whether
alignment faults should be fixed up.An alignment fault occurs, for example, when a
word is loaded from an odd byte address and is fixed up by reading the word as two
separate bytes.Alignment faults are only enabled on Intel processors when the AM
flag is set in the Cr0 register, the AC flag is set in the EFlags register, and the current
privilege level is 3 (user mode).

1996 Ch05 11.24.99 09:53 Page 121

Threads: ThreadEventPair122

ThreadEventPair
HANDLE EventPair; // Information Class 8

This information class can only be set. It sets the EventPair of the thread. EventPair
should be a handle to an EventPair granting STANDARD_RIGHTS_ALL access. If the
thread already has an EventPair, the existing EventPair is first dereferenced.

The thread EventPair is used by the routines ZwSetLowWaitHighThread and
ZwSetHighWaitLowThread.

In Windows 2000, this information class has been removed and
STATUS_INVALID_INFO_CLASS is returned.

ThreadQuerySetWin32StartAddress
PVOID Win32StartAddress; // Information Class 9

This information class can be both queried and set.

For the Intel platform, the initial value of this variable is the value of the Eax register
in the Context structure passed to ZwCreateThread. If the thread is started using the
thread start thunk in kernel32.dll, Eax contains the “Win32 start address.”

The field in the ETHREAD structure that is queried and set by this information class is
also used to hold the “LpcReceivedMessageId.”Any thread that has called
ZwReplyWaitReplyPort or ZwReplyWaitReceivePort will have modified this field.

In David Solomon’s Inside Windows NT (second edition, Microsoft Press, 1998) the
output of the resource kit utility “tlist” is included to illustrate the difference
between the actual start address and the Win32 start address; one of the Win32 start
addresses in the tlist output is less than 0x10000 (normally a reserved region of the
address space)—this thread is called ZwReplyWaitReceivePort.

ThreadZeroTlsCell
ULONG ZeroTlsCell; // Information Class 10

This information class can only be set. It zeroes the Thread Local Storage cell identi-
fied by ZeroTlsCell (ZeroTlsCell is a TLS index).

ThreadPerformanceCount
LARGE_INTEGER PerformanceCount; // Information Class 11

The performance count is always zero.

ThreadAmILastThread
ULONG AmILastThread; // Information Class 12

AmILastThread is interpreted as a boolean and indicates whether the thread is the only
one in the process.

1996 Ch05 11.24.99 09:53 Page 122

Threads: ZwSuspendThread 123

ThreadIdealProcessor
ULONG IdealProcessor; // Information Class 13

This information class can only be set. It specifies the number of the preferred proces-
sor for the thread.A value of MAXIMUM_PROCESSORS tells the system that the thread has
no preferred processor.

ThreadPriorityBoost
ULONG PriorityBoost; // Information Class 14

This information class can be both queried and set. PriorityBoost is interpreted as a
boolean and specifies whether priority boosting is enabled or disabled.

ThreadSetTlsArrayAddress
PVOID SetTlsArrayAddress; // Information Class 15

This information class can only be set. It sets the address of the Thread Local Storage
array.

ThreadIsIoPending
ULONG IsIoPending; // Information Class 16

IsIoPending is interpreted as a boolean and indicates whether the thread has any out-
standing IRPs (I/O Request Packets).

ThreadHideFromDebugger

This information class can only be set. It disables the generation of debug events for
the thread.This information class requires no data, and so ThreadInformation may be
a null pointer .ThreadInformationLength should be zero.

ZwSuspendThread
ZwSuspendThread suspends the execution of a thread.

NTSYSAPI
NTSTATUS
NTAPI
ZwSuspendThread(

IN HANDLE ThreadHandle,
OUT PULONG PreviousSuspendCount OPTIONAL
);

1996 Ch05 11.24.99 09:53 Page 123

Threads: ZwSuspend Thread124

Parameters

ThreadHandle
A handle to a thread object.The handle must grant THREAD_SUSPEND_RESUME access.

PreviousSuspendCount
Optionally points to a variable that receives the previous suspend count of the thread.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_SUSPEND_COUNT_EXCEEDED, or
STATUS_THREAD_IS_TERMINATING.

Related Win32 Functions
SuspendThread.

Remarks
SuspendThread exposes the full functionality of ZwSuspendThread.

ZwResumeThread

ZwResumeThread decrements the suspend count of a thread and resumes the execution
of the thread if the suspend count reaches zero.
NTSYSAPI
NTSTATUS
NTAPI
ZwResumeThread(

IN HANDLE ThreadHandle,
OUT PULONG PreviousSuspendCount OPTIONAL
);

Parameters

ThreadHandle
A handle to a thread object.The handle must grant THREAD_SUSPEND_RESUME access.

PreviousSuspendCount
Optionally points to a variable that receives the previous suspend count of the thread.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED, or
STATUS_INVALID_HANDLE.

1996 Ch05 11.24.99 09:53 Page 124

Threads: ZwGetContextThread 125

Related Win32 Functions
ResumeThread.

Remarks
ResumeThread exposes the full functionality of ZwResumeThread.

ZwGetContextThread

ZwGetContextThread retrieves the execution context of a thread.
NTSYSAPI
NTSTATUS
NTAPI
ZwGetContextThread(

IN HANDLE ThreadHandle,
OUT PCONTEXT Context
);

Parameters

ThreadHandle
A handle to a thread object.The handle must grant THREAD_GET_CONTEXT access.

Context
Points to a caller-allocated buffer or variable that receives the thread context
information.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED, or
STATUS_INVALID_HANDLE.

Related Win32 Functions
GetThreadContext.

Remarks
GetThreadContext exposes the full functionality of ZwGetContextThread.

The ContextFlags member of the CONTEXT structure specifies which aspects of the
thread’s context should be retrieved.

For the Intel family of processors, the debug registers are only valid if at least one of
Dr0-3 is enabled in Dr7—regardless of whether CONTEXT_DEBUG_REGISTERS is set.This
means that Dr6 cannot reliably be used to detect the difference between a single step
and a debug register breakpoint.

1996 Ch05 11.24.99 09:53 Page 125

Threads: ZwSetContextThread126

ZwSetContextThread

ZwSetContext sets the execution context of a thread.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetContextThread(

IN HANDLE ThreadHandle,
IN PCONTEXT Context
);

ThreadHandle
A handle to a thread object.The handle must grant THREAD_SET_CONTEXT access.

Context
Points to a caller-allocated buffer or variable that contains the thread context
information.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED, or
STATUS_INVALID_HANDLE.

Related Win32 Functions
SetThreadContext.

Remarks
SetThreadContext exposes the full functionality of ZwSetContextThread.

The ContextFlags member of the CONTEXT structure specifies which aspects of the
thread’s context should be set.

Some values in the CONTEXT structure that cannot be specified are silently set to the
correct value.This includes bits in the CPU status register that specify the privileged
processor mode, global enabling bits in the debugging register, and other states that
must be controlled by the operating system.

For the Intel family of processors, the sanitization of the EFlags register disables the
seemingly harmless Restart Flag (RF).This is a nuisance when developing a user
mode debugger that implements some breakpoints with the debug registers; because to
continue from a breakpoint the breakpoint, must first be removed, then the thread
must be single stepped, and finally the breakpoint must be restored.To ensure that no
other thread passes through the breakpoint while it is temporarily removed, all other
threads should be suspended until the breakpoint is restored.

ZwQueueApcThread

ZwQueueApcThread queues a user APC request to the APC queue of a thread.
NTSYSAPI
NTSTATUS
NTAPI

1996 Ch05 11.24.99 09:53 Page 126

Threads: ZwQueueApcThread 127

ZwQueueApcThread(
IN HANDLE ThreadHandle,
IN PKNORMAL_ROUTINE ApcRoutine,
IN PVOID ApcContext OPTIONAL,
IN PVOID Argument1 OPTIONAL,
IN PVOID Argument2 OPTIONAL
);

Parameters

ThreadHandle
A handle to a thread object.The handle must grant THREAD_SET_CONTEXT access.

ApcRoutine
A pointer to the routine to execute.The signature of the routine is:

VOID (NTAPI *PKNORMAL_ROUTINE)(PVOID ApcContext,
PVOID Argument1, PVOID Argument2);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

Argument1
A void pointer that can be used to provide the ApcRoutine with additional
information.

Argument2
A void pointer that can be used to provide the ApcRoutine with additional
information.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED, or
STATUS_INVALID_HANDLE.

Related Win32 Functions
QueueUserApc.

Remarks
The APCs created by ZwQueueApcThread are termed “User APCs” and are only called
at well-defined points in the execution of thread to which they are queued.
Specifically, the thread must either call a wait service specifying that alerts are enabled,
or it must call ZwTestAlert.

If a wait service detects that there are queued user APCs for the thread, it returns with
status STATUS_USER_APC.

1996 Ch05 11.24.99 09:53 Page 127

Threads: ZwTestAlert128

ZwTestAlert

ZwTestAlert tests whether a thread has been alerted.
NTSYSAPI
NTSTATUS
NTAPI
ZwTestAlert(

VOID
);

Parameters
None.

Return Value
Returns STATUS_SUCCESS or STATUS_ALERTED.

Related Win32 Functions
None.

Remarks
ZwTestAlert tests whether the current thread has been alerted (and clears the alerted
flag). It also enables the delivery of queued user APCs.

ZwAlertThread

ZwAlertThread wakes a thread from an alertable wait.
NTSYSAPI
NTSTATUS
NTAPI
ZwAlertThread(

IN HANDLE ThreadHandle
);

Parameters

ThreadHandle
A handle to a thread object.The handle must grant THREAD_ALERT access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED, or
STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

1996 Ch05 11.24.99 09:53 Page 128

Threads: ZwAlertResumeThread 129

Remarks
An alert is similar to a user APC without the procedure call. It has the same effect on
wait services and is only distinguishable by the return status (STATUS_ALERTED rather
than STATUS_USER_APC).

The Win32 wrappers around the alertable system services check for a return status of
STATUS_ALERTED and restart the alertable wait if this value is returned.Thus,
ZwAlertThread cannot be used to wake a thread that is sleeping as a result of a call to
SleepEx, for example.

ZwAlertResumeThread

ZwAlertResumeThread wakes a thread from a possibly suspended alertable wait.
NTSYSAPI
NTSTATUS
NTAPI
ZwAlertResumeThread(

IN HANDLE ThreadHandle,
OUT PULONG PreviousSuspendCount OPTIONAL
);

Parameters

ThreadHandle
A handle to a thread object.The handle must grant THREAD_SUSPEND_RESUME access.

PreviousSuspendCount
Optionally points to a variable that will receive the previous suspend count of the
thread.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
If the thread was in an alertable wait state when it was suspended,
ZwAlertResumeThread resumes the thread and alerts it so that it returns immediately
from the wait with status STATUS_ALERTED.

1996 Ch05 11.24.99 09:53 Page 129

Threads: ZwRegisterThreadTerminatePort130

ZwRegisterThreadTerminatePort

ZwRegisterThreadTerminatePort registers an LPC port that should be sent a message
when the thread terminates.
NTSYSAPI
NTSTATUS
NTAPI
ZwRegisterThreadTerminatePort(

IN HANDLE PortHandle
);

Parameters

PortHandle
A handle to a port object.The handle need not grant any specific access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

ZwRegisterThreadTerminatePort adds the port to the list of ports that will receive an
LPC message when the current thread terminates.

The message has a MessageType of LPC_CLIENT_DIED and contains 8 bytes of data,
specifically the creation time of the thread in the standard time format (that is, the
number of 100-nanosecond intervals since January 1, 1601).

ZwImpersonateThread

ZwImpersonateThread enables one thread to impersonate the security context of
another.
NTSYSAPI
NTSTATUS
NTAPI
ZwImpersonateThread(

IN HANDLE ThreadHandle,
IN HANDLE TargetThreadHandle,
IN PSECURITY_QUALITY_OF_SERVICE SecurityQos
);

Parameters

ThreadHandle
A handle to the thread which is to impersonate another thread.The handle must grant
THREAD_IMPERSONATION access.

TargetThreadHandle
A handle to the thread which is to be impersonated.The handle must grant
THREAD_DIRECT_IMPERSONATE access.

1996 Ch05 11.24.99 09:53 Page 130

Threads: ZwImpersonateAnonymousToken 131

SecurityQos
Points to a structure that specifies the security Quality of Service.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
The impersonation is ended by calling ZwSetInformationThread with an informa-
tion class of ThreadImpersonationToken, specifying an ImpersonationToken handle of
zero.

ZwImpersonateAnonymousToken

ZwImpersonateAnonymousToken sets the impersonation token of a thread to the
anonymous token (a token with no privileges and “Everyone” as the sole group
membership).
NTSYSAPI
NTSTATUS
NTAPI
ZwImpersonateAnonymousToken(

IN HANDLE ThreadHandle
);

Parameters

ThreadHandle
A handle to a thread object.The handle must grant THREAD_IMPERSONATION access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
The routine ZwImpersonateAnonymousToken is only present in Windows 2000.

The impersonation is ended by calling ZwSetInformationThread with an information
class of ThreadImpersonationToken, specifying an ImpersonationToken handle of
zero.

1996 Ch05 11.24.99 09:53 Page 131

1996 Ch05 11.24.99 09:53 Page 132

6
Processes

The system services described in this chapter create and manipulate process objects.

ZwCreateProcess

ZwCreateProcess creates a process object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateProcess(

OUT PHANDLE ProcessHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN HANDLE InheritFromProcessHandle,
IN BOOLEAN InheritHandles,
IN HANDLE SectionHandle OPTIONAL,
IN HANDLE DebugPort OPTIONAL,
IN HANDLE ExceptionPort OPTIONAL
);

Parameters

ProcessHandle
Points to a variable that will receive the process object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the process object.This parame-
ter can be zero, or any combination of the following flags:

PROCESS_TERMINATE Terminate process
PROCESS_CREATE_THREAD Create threads in process
PROCESS_SET_SESSIONID Set process session id
PROCESS_VM_OPERATION Protect and lock memory of process
PROCESS_VM_READ Read memory of process
PROCESS_VM_WRITE Write memory of process
PROCESS_DUP_HANDLE Duplicate handles of process
PROCESS_CREATE_PROCESS Bequeath address space and handles to

new process

1996 CH06 11.24.99 09:54 Page 133

Processes: ZwCreateProcess134

PROCESS_SET_QUOTA Set process quotas
PROCESS_SET_INFORMATION Set information about process
PROCESS_QUERY_INFORMATION Query information about process
PROCESS_SET_PORT Set process exception or debug port
PROCESS_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_PERMANENT, OBJ_EXCLUSIVE,
and OBJ_OPENIF are not valid attributes for a process object.

InheritFromProcessHandle
A handle to the process object from which virtual address space and handles can be
inherited.The handle must grant PROCESS_CREATE_PROCESS access.

InheritHandles
Specifies whether open inheritable handles should be inherited from the process
referred to by InheritFromProcessHandle.

SectionHandle
Optionally specifies a handle to an image section that grants SECTION_MAP_EXECUTE
access. If this value is zero, the new process inherits the address space from the process
referred to by InheritFromProcessHandle. In Windows 2000 the lowest bit specifies
(when set) that the process should not be associated with the job of the
InheritFromProcessHandle process.

DebugPort
Optionally specifies a handle to a port that will receive debug messages. If this value is
zero, no debug messages are sent.The handle need not grant any particular access.The
circumstances under which messages are sent to the debug port and their content are
described in Chapter 20,“Exceptions and Debugging.”

ExceptionPort
Optionally specifies a handle to a port that will receive exception messages. If this
value is zero, no exception messages are sent.The handle need not grant any particular
access.The circumstances under which messages are sent are sent to the exception port
and their content is described in Chapter 20.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
CreateProcess, CreateProcessAsUser.

1996 CH06 11.24.99 09:54 Page 134

Processes: ZwOpenProcess 135

Remarks
The process created does not contain any threads.

The include file ntdef.h contains the following comments and definition:
// Low order two bits of a handle are ignored by the system and available
// for use by application code as tag bits. The remaining bits are opaque
// and [...]

#define OBJ_HANDLE_TAGBITS 0x00000003L

This property of handles allows the lowest order bit of SectionHandle to be used to
specify whether the created process should belong to the job of the process from
which it inherits. If the job limits do not allow a new process to break away from the
job, ZwCreateProcess fails with STATUS_ACCESS_DENIED.

Because Win32 programs do not normally inherit an address space and only occasion-
ally make use of the ability to inherit handles, another way of creating a process which
does not belong to the job (if any) of its creator is to specify some other process (that
is not part of the job) as the “inherit from process.”

Practical examples of creating a process and thread from an image section and by
inheriting address space (forking) appear in Examples 6.1 and 6.2, after the necessary
ancillary routines have been introduced.

The InheritedFromUniqueProcessId member of the PROCESS_BASIC_INFORMATION struc-
ture is often interpreted as being the identifier of the parent process, and in a sense this
is correct. However, it is not necessarily the identifier of the process that is called
ZwCreateProcess, but rather the identifier of the process whose handle is passed as the
InheritFromProcessHandle parameter; most of the time, these are one and the same
process.

ZwOpenProcess

ZwOpenProcess opens a process object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenProcess(

OUT PHANDLE ProcessHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PCLIENT_ID ClientId OPTIONAL
);

Parameters

ProcessHandle
Points to a variable that will receive the process object handle if the call is successful.

1996 CH06 11.24.99 09:54 Page 135

Processes: ZwOpenProcess136

DesiredAccess
Specifies the type of access that the caller requires to the process object.This parameter
can be zero, or any combination of the following flags:

PROCESS_TERMINATE Terminate process
PROCESS_CREATE_THREAD Create threads in process
PROCESS_SET_SESSIONID Set process session id
PROCESS_VM_OPERATION Protect and lock memory of process
PROCESS_VM_READ Read memory of process
PROCESS_VM_WRITE Write memory of process
PROCESS_DUP_HANDLE Duplicate handles of process
PROCESS_CREATE_PROCESS Bequeath address space and handles to

new process
PROCESS_SET_QUOTA Set process quotas
PROCESS_SET_INFORMATION Set information about process
PROCESS_QUERY_INFORMATION Query information about process
PROCESS_SET_PORT Set process exception or debug port
PROCESS_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_PERMANENT, OBJ_EXCLUSIVE,
and OBJ_OPENIF are not valid attributes for a process object.

ClientId
Optionally points to a structure that contains the process id (UniqueProcess) and
optionally the id of a thread in the process (UniqueThread).

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_NOT_FOUND, STATUS_INVALID_PARAMETER_MIX, or
STATUS_INVALID_PARAMETER.

Related Win32 Functions
OpenProcess.

Remarks
Process objects can be given names in the same way as other objects.This name is dif-
ferent from what is commonly referred to as the process name, which is actually the
name of the executable file from which the initial section object of the process was
created.

The process to be opened is identified either by ObjectAttributes.ObjectName or
ClientId; it is an error to specify both.

If ClientId.UniqueThread is not zero, it must be the identifier of a thread in the process
identified by ClientId.UniqueProcess.

If the caller has SeDebugPrivilege, the check of whether the caller is granted access to
the process by its ACL is bypassed. (This behavior can be disabled under Windows NT
4.0 by setting the NtGlobalFlag FLG_IGNORE_DEBUG_PRIV.)

1996 CH06 11.24.99 09:54 Page 136

Processes: ZwQueryInformationProcess 137

ZwTerminateProcess

ZwTerminateProcess terminates a process and the threads that it contains.
NTSYSAPI
NTSTATUS
NTAPI
ZwTerminateProcess(

IN HANDLE ProcessHandle OPTIONAL,
IN NTSTATUS ExitStatus
);

Parameters

ProcessHandle
A handle to a process object.The handle must grant PROCESS_TERMINATE access. If this
value is zero, the current process is terminated.

ExitStatus
Specifies the exit status for the process and for all threads terminated as a result of this
call.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
TerminateProcess, ExitProcess.

Remarks
TerminateProcess exposes the full functionality of ZwTerminateProcess.

ZwQueryInformationProcess

ZwQueryInformationProcess retrieves information about a process object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryInformationProcess(

IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

ProcessHandle
A handle to a process object.The handle must grant PROCESS_QUERY_INFORMATION
access. Some information classes also require PROCESS_VM_READ access.

1996 CH06 11.24.99 09:54 Page 137

Processes: ZwQueryInformationProcess138

ProcessInformationClass
Specifies the type of process information to be queried.The permitted values are
drawn from the enumeration PROCESSINFOCLASS, described in the following section.

ProcessInformation
Points to a caller-allocated buffer or variable that receives the requested process infor-
mation.

ProcessInformationLength
Specifies the size in bytes of ProcessInformation, which the caller should set according
to the given ProcessInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
ProcessInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, STATUS_INFO_LENGTH_MISMATCH, or
STATUS_NOT_SUPPORTED.

Related Win32 Functions
GetProcessAffinityMask, GetProcessPriorityBoost, GetProcessWorkingSetSize,
GetProcessTimes, GetExitCodeProcess, SetErrorMode.

Remarks
None.

ZwSetInformationProcess

ZwSetInformationProcess sets information affecting a process object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetInformationProcess(

IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
IN PVOID ProcessInformation,
IN ULONG ProcessInformationLength
);

Parameters

ProcessHandle
A handle to a process object.The handle should normally grant
PROCESS_SET_INFORMATION access. Some information classes require in addition
or instead PROCESS_VM_WRITE, PROCESS_SET_PORT, PROCESS_SET_QUOTA or
PROCESS_SET_SESSIONID access.

1996 CH06 11.24.99 09:54 Page 138

Processes: PROCESSINFOCLASS 139

ProcessInformationClass
Specifies the type of process information to be set.The permitted values are drawn
from the enumeration PROCESSINFOCLASS, described in the following section.

ProcessInformation
Points to a caller-allocated buffer or variable that contains the process information to
be set.

ProcessInformationLength
Specifies the size in bytes of ProcessInformation, which the caller should set according
to the given ProcessInformationClass.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, STATUS_INFO_LENGTH_MISMATCH,
STATUS_PORT_ALREADY_SET, STATUS_PRIVILEGE_NOT_HELD, or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
SetProcessAffinityMask, SetProcessPriorityBoost, SetProcessWorkingSetSize,
SetErrorMode.

Remarks
None.

PROCESSINFOCLASS
Query Set

typedef enum _PROCESSINFOCLASS {
ProcessBasicInformation, // 0 Y N
ProcessQuotaLimits, // 1 Y Y
ProcessIoCounters, // 2 Y N
ProcessVmCounters, // 3 Y N
ProcessTimes, // 4 Y N
ProcessBasePriority, // 5 N Y
ProcessRaisePriority, // 6 N Y
ProcessDebugPort, // 7 Y Y
ProcessExceptionPort, // 8 N Y
ProcessAccessToken, // 9 N Y
ProcessLdtInformation, // 10 Y Y
ProcessLdtSize, // 11 N Y
ProcessDefaultHardErrorMode, // 12 Y Y
ProcessIoPortHandlers, // 13 N Y
ProcessPooledUsageAndLimits, // 14 Y N
ProcessWorkingSetWatch, // 15 Y Y
ProcessUserModeIOPL, // 16 N Y
ProcessEnableAlignmentFaultFixup, // 17 N Y
ProcessPriorityClass, // 18 N Y
ProcessWx86Information, // 19 Y N
ProcessHandleCount, // 20 Y N
ProcessAffinityMask, // 21 N Y
ProcessPriorityBoost, // 22 Y Y
ProcessDeviceMap, // 23 Y Y

1996 CH06 11.24.99 09:54 Page 139

Processes: PROCESSINFOCLASS140

ProcessSessionInformation, // 24 Y Y
ProcessForegroundInformation, // 25 N Y
ProcessWow64Information // 26 Y N

} PROCESSINFOCLASS;

ProcessBasicInformation
typedef struct _PROCESS_BASIC_INFORMATION { // Information Class 0

NTSTATUS ExitStatus;
PPEB PebBaseAddress;
KAFFINITY AffinityMask;
KPRIORITY BasePriority;
ULONG UniqueProcessId;
ULONG InheritedFromUniqueProcessId;

} PROCESS_BASIC_INFORMATION, *PPROCESS_BASIC_INFORMATION;

Members

ExitStatus
The exit status of the process. If the process has not exited, this member normally
contains STATUS_PENDING.

PebBaseAddress
The base address of the Process Environment Block (PEB).

AffinityMask
The processor affinity mask of the process.

BasePriority
The base priority of the process.

UniqueProcessId
The process identifier of the process.

InheritedFromUniqueProcessId
The process identifier of the process from which inheritable handles and address space
may have been inherited.

Remarks
None.

ProcessQuotaLimits
typedef struct _QUOTA_LIMITS { // Information Class 1

ULONG PagedPoolLimit;
ULONG NonPagedPoolLimit;
ULONG MinimumWorkingSetSize;
ULONG MaximumWorkingSetSize;
ULONG PagefileLimit;
LARGE_INTEGER TimeLimit;

} QUOTA_LIMITS, *PQUOTA_LIMITS;

1996 CH06 11.24.99 09:54 Page 140

Processes: ProcessIoCounters 141

Members

PagedPoolLimit
The size in bytes of the paged pool quota of the processes sharing the quota block.

NonPagedPoolLimit
The size in bytes of the nonpaged pool quota of the processes sharing the quota block.

MinimumWorkingSetSize
The size in bytes of the minimum working set size of the process.

MaximumWorkingSetSize
The size in bytes of the maximum working set size of the process.

PagefileLimit
The size in pages of the pagefile quota of the processes sharing the quota block.

TimeLimit
The execution time limit of the processes sharing the quota block measured in units of
100-nanoseconds. Execution time limits are not supported.

Remarks
This information class can be both queried and set.

When setting quota limits, if MinimumWorkingSetSize and MaximumWorkingSetSize are
both non-zero, the working set size is adjusted and the other values are ignored.
Otherwise, the working set size is not adjusted, and if the process is still using the
default quota block and SeIncreaseQuotaPrivilege is enabled, the other quota values
are updated.

ProcessIoCounters
typedef struct _IO_COUNTERS { // Information Class 2

LARGE_INTEGER ReadOperationCount;
LARGE_INTEGER WriteOperationCount;
LARGE_INTEGER OtherOperationCount;
LARGE_INTEGER ReadTransferCount;
LARGE_INTEGER WriteTransferCount;
LARGE_INTEGER OtherTransferCount;

} IO_COUNTERS, *PIO_COUNTERS;

Members

ReadOperationCount
The number of calls to ZwReadFile by the process.

WriteOperationCount
The number of calls to ZwWriteFile by the process.

1996 CH06 11.24.99 09:54 Page 141

Processes: ProcessIoCounters142

OtherOperationCount
The number of calls to all other I/O system services such as ZwDeviceIoControlFile by
the process.

ReadTransferCount
The number of bytes read by all calls to ZwReadFile by the process.

WriteTransferCount
The number of bytes written by all calls to ZwWriteFile by the process.

OtherTransferCount
The number of bytes transferred to satisfy all other I/O operations such as
ZwDeviceIoControlFile by the process.

Remarks
Windows NT 4.0 does not support the accounting of I/O operations on a per-process
basis, and ZwQuerySystemInformation returns STATUS_NOT_SUPPORTED if this information
class is queried.Windows 2000 supports this information class.

ProcessVmCounters
typedef struct _VM_COUNTERS { // Information Class 3

ULONG PeakVirtualSize;
ULONG VirtualSize;
ULONG PageFaultCount;
ULONG PeakWorkingSetSize;
ULONG WorkingSetSize;
ULONG QuotaPeakPagedPoolUsage;
ULONG QuotaPagedPoolUsage;
ULONG QuotaPeakNonPagedPoolUsage;
ULONG QuotaNonPagedPoolUsage;
ULONG PagefileUsage;
ULONG PeakPagefileUsage;

} VM_COUNTERS, *PVM_COUNTERS;

Members

PeakVirtualSize
The peak size in bytes of the virtual address space of the process.

VirtualSize
The size in bytes of the virtual address space of the process.

PageFaultCount
The number of page faults incurred by the process.

PeakWorkingSetSize
The peak size in bytes of the working set list of the process.

1996 CH06 11.24.99 09:54 Page 142

Processes: ProcessTimes 143

WorkingSetSize
The size in bytes of the working set list of the process.

QuotaPeakPagedPoolUsage
The peak size in bytes of paged pool charged to the process.

QuotaPagedPoolUsage
The size in bytes of paged pool charged to the process.

QuotaPeakNonPagedPoolUsage
The peak size in bytes of nonpaged pool charged to the process.

QuotaNonPagedPoolUsage
The size in bytes of nonpaged pool charged to the process.

PagefileUsage
The size in bytes of pagefile pages used by the process.

PeakPagefileUsage
The peak size in bytes of pagefile pages used by the process.

Remarks
None.

ProcessTimes
typedef struct _KERNEL_USER_TIMES { // Information Class 4

LARGE_INTEGER CreateTime;
LARGE_INTEGER ExitTime;
LARGE_INTEGER KernelTime;
LARGE_INTEGER UserTime;

} KERNEL_USER_TIMES, *PKERNEL_USER_TIMES;

Members

CreateTime
The creation time of the process in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

ExitTime
The exit time of the process in the standard time format (that is, the number of 100-
nanosecond intervals since January 1, 1601). For processes which have not exited, this
value is zero.

KernelTime
The sum of the time spent executing in kernel mode by the threads of the process,
which measured in units of 100-nanoseconds.

1996 CH06 11.24.99 09:54 Page 143

Processes: ProcessTimes144

UserTime
The sum of the time spent executing in user mode by the threads of the process,
which is measured in units of 100-nanoseconds.

Remarks
None.

ProcessBasePriority
KPRIORITY BasePriority; // Information Class 5

This information class can only be set. It sets the base priority of the process and
iterates over the threads of the process, setting their base priorities.
SeIncreaseBasePriorityPrivilege is needed to increase the base priority.The memory
priority of the process is also set, based on the result of masking BasePriority with
0x80000000.

ProcessRaisePriority
ULONG RaisePriority; // Information Class 6

This information class can only be set. It iterates over the threads of the process,
increasing their priority by RaisePriority (up to a maximum of the highest non-
realtime priority).

ProcessDebugPort
HANDLE DebugPort; // Information Class 7

When querying this information class, the value is interpreted as a boolean indicating
whether a debug port has been set or not.The debug port can be set only if it was
previously zero (in Windows NT 4.0, once set the port can also be reset to zero).The
handle which is set must be a handle to a port object. (Zero is also allowed in
Windows NT 4.0.)

ProcessExceptionPort
HANDLE ExceptionPort; // Information Class 8

This information class can only be set.The exception port can be set only if it was
previously zero.The handle must be a handle to a port object.

ProcessAccessToken
typedef struct _PROCESS_ACCESS_TOKEN { // Information Class 9

HANDLE Token;
HANDLE Thread;

} PROCESS_ACCESS_TOKEN, *PPROCESS_ACCESS_TOKEN;

1996 CH06 11.24.99 09:54 Page 144

Processes: ProcessPooledUsageAndLimits 145

Members

Token
A handle to a primary token to assign to the process.The handle must grant
TOKEN_ASSIGN_PRIMARY access.

Thread
Not used.

Remarks
This information class can only be set. SeAssignPrimaryTokenPrivilege is required
unless the token is a Windows 2000 filtered copy of the token of the current process.
If the token is inappropriate, ZwSetInformationProcess may return
STATUS_BAD_TOKEN_TYPE or STATUS_TOKEN_ALREADY_IN_USE.

ProcessDefaultHardErrorMode
ULONG DefaultHardErrorMode; // Information Class 12

This information can be both queried and set.The hard error mode is a bit array of
flags that correspond to the flags used by the Win32 function SetErrorMode, with the
exception that the meaning of the lowest bit is inverted.The Win32 flags are:

SEM_FAILCRITICALERRORS 0x0001
SEM_NOGPFAULTERRORBOX 0x0002
SEM_NOALIGNMENTFAULTEXCEPT 0x0004
SEM_NOOPENFILEERRORBOX 0x8000

So, setting a hard error mode of one means do not fail critical errors.

ProcessPooledUsageAndLimits
typedef struct _POOLED_USAGE_AND_LIMITS { // Information Class 14

ULONG PeakPagedPoolUsage;
ULONG PagedPoolUsage;
ULONG PagedPoolLimit;
ULONG PeakNonPagedPoolUsage;
ULONG NonPagedPoolUsage;
ULONG NonPagedPoolLimit;
ULONG PeakPagefileUsage;
ULONG PagefileUsage;
ULONG PagefileLimit;

} POOLED_USAGE_AND_LIMITS, *PPOOLED_USAGE_AND_LIMITS;

Members

PeakPagedPoolUsage
The peak size in bytes of the paged pool charged to the processes sharing the quota
block.

PagedPoolUsage
The size in bytes of the paged pool charged to the processes sharing the quota block.

1996 CH06 11.24.99 09:54 Page 145

Processes: ProcessPooledUsageAndLimits146

PagedPoolLimit
The size in bytes of the paged pool quota of the processes sharing the quota block.

PeakNonPagedPoolUsage
The peak size in bytes of the nonpaged pool charged to the processes sharing the
quota block.

NonPagedPoolUsage
The size in bytes of the nonpaged pool charged to the processes sharing the quota
block.

NonPagedPoolLimit
The size in bytes of the nonpaged pool quota of the processes sharing the quota block.

PeakPagefileUsage
The peak size in pages of the pagefile used by the processes sharing the quota block.

PagefileUsage
The size in pages of the pagefile used by the processes sharing the quota block.

PagefileLimit
The size in pages of the pagefile quota of the processes sharing the quota block.

Remarks
None.

ProcessWorkingSetWatch
typedef struct _PROCESS_WS_WATCH_INFORMATION { // Information Class 15

PVOID FaultingPc;
PVOID FaultingVa;

} PROCESS_WS_WATCH_INFORMATION, *PPROCESS_WS_WATCH_INFORMATION;

Members

FaultingPc
Pointer to the instruction that caused the page fault.

FaultingVa
The virtual address referenced by the instruction.The low bit indicates whether the
fault was soft (if set) or hard (if clear).

Remarks
When setting this information class, no information is required, and so
ProcessInformation may be null and ProcessInformationLength should be zero.

1996 CH06 11.24.99 09:54 Page 146

Processes: ProcessPriorityClass 147

When querying this information class, an array of PROCESS_WS_WATCH_INFORMATION
structures are returned; the end of the array is marked by an element with a
FaultingPc value of zero.

The system records the first 1020 page faults that occur either after working set
watching is enabled, or after the working set watch information is queried.

ProcessUserModeIOPL
UserModeIOPL; // Information Class 16

This information class can only be set and no information is required.Therefore,
ProcessInformation may be null and ProcessInformationLength should be zero.

SeTcbPrivilege is required to set this information class.

This information class is only meaningful for Intel processors; it modifies the I/O
Privilege Level for the process so that the process may directly access the I/O ports
and execute other instructions that are sensitive to IOPL.

ProcessEnableAlignmentFaultFixup
BOOLEAN EnableAlignmentFaultFixup; // Information Class 17

This information class only can be set and is equivalent to calling
ZwSystemInformationProcess with an information class of
ProcessDefaultHardErrorMode and a value of SEM_NOALIGNMENTFAULTEXCEPT.

ProcessPriorityClass
typedef struct _PROCESS_PRIORITY_CLASS { // Information Class 18

BOOLEAN Foreground;
UCHAR PriorityClass;

} PROCESS_PRIORITY_CLASS, *PPROCESS_PRIORITY_CLASS;

Members

Foreground
Specifies whether the process is running in the foreground. Performance factors affected
include scheduling quantum and working set trimming and growth.

PriorityClass
The scheduling priority class of the process. Permitted values are zero to four (for
Windows NT 4.0) or six (for Windows 2000). SeIncreaseBasePriorityPrivilege is
required to set PriorityClass to four.The defined values include:

PC_IDLE 1
PC_NORMAL 2
PC_HIGH 3
PC_REALTIME 4
PC_BELOW_NORMAL 5
PC_ABOVE_NORMAL 6

1996 CH06 11.24.99 09:54 Page 147

Processes: ProcessPriorityClass148

Remarks
This information class can only be set.

Scheduling priority parameter changes are propagated to all the threads of the process.

ProcessWx86Information
ULONG Wx86Information; // Information Class 19

Wx86Information always contains zero.

ProcessHandleCount
ULONG HandleCount; // Information Class 20

HandleCount receives a count of the number of open handles of the process.

ProcessAffinityMask
KAFFINITY AffinityMask; // Information Class 21

This information class only can be set.The specified processor affinity mask is propa-
gated to all the threads of the process.

ProcessPriorityBoost
ULONG PriorityBoost; // Information Class 22

This information can be both queried and set. PriorityBoost is interpreted as a
boolean and specifies whether priority boosting is enabled or disabled. Changes to
PriorityBoost are propagated to all the threads of the process.

ProcessDeviceMap
typedef struct _PROCESS_DEVICEMAP_INFORMATION { // Information Class 23

union {
struct {

HANDLE DirectoryHandle;
} Set;
struct {

ULONG DriveMap;
UCHAR DriveType[32];

} Query;
};

} PROCESS_DEVICEMAP_INFORMATION, *PPROCESS_DEVICEMAP_INFORMATION;

Members

DirectoryHandle
A handle to an object directory granting DIRECTORY_TRAVERSE access.

1996 CH06 11.24.99 09:54 Page 148

Processes: ProcessForegroundInformation 149

DriveMap
A bit array representing the disk drives available to the process.

DriveType
An array of values representing the types of disk drives.The defined types include:

DRIVE_UNKNOWN 0
DRIVE_NO_ROOT_DIR 1
DRIVE_REMOVABLE 2
DRIVE_FIXED 3
DRIVE_REMOTE 4
DRIVE_CDROM 5
DRIVE_RAMDISK 6

Remarks
When a symbolic link with a name conforming to the DOS drive letter format (an
alphabetic character followed by a colon) is created in an object directory, the device
map of the directory is updated to reflect the presence of a new disk drive.When a
process sets its device map to an object directory handle, it references the device map
of the directory, giving the process access to all the disk drives symbolically linked to
the directory with DOS format names. By default, the device map of a process refers
to the device map associated with the object directory named “\??”.

ProcessSessionInformation
typedef struct _PROCESS_SESSION_INFORMATION { // Information Class 24
ULONG SessionId;
} PROCESS_SESSION_INFORMATION, *PPROCESS_SESSION_INFORMATION;

Members

SessionId
A numeric identifier for a session.

Remarks
SeTcbPrivilege is required to set this information class.

Session identifiers are used by Windows Terminal Server to distinguish between client
sessions.

The session identifier is stored in the EPROCESS structure, the process token, and in the
Process Environment Block (PEB) of the target process.

ProcessForegroundInformation
BOOLEAN Foreground; // Information Class 25

Specifies whether the process is running in the foreground.The performance factors
that are affected include scheduling quantum and working set trimming and growth.

This information class sets one of the parameters that also can be set using the infor-
mation class, ProcessPriorityClass.

1996 CH06 11.24.99 09:54 Page 149

Processes: ProcessWow64Information150

ProcessWow64Information
ULONG Wow64Information; // Information Class 26

Wow64Information normally contains zero on the Intel platform.

The following routines are not part of the Native API, but they perform the useful task
of building a complex data structure in self-relative (normalized) form.The routines
are part of the Run-Time Library (RTL) included in ntdll.dll.

RtlCreateProcessParameters

RtlCreateProcessParameters creates and populates the data structure used to hold the
user mode process parameters.
NTSTATUS
NTAPI
RtlCreateProcessParameters(

OUT PPROCESS_PARAMETERS *ProcessParameters,
IN PUNICODE_STRING ImageFile,
IN PUNICODE_STRING DllPath OPTIONAL,
IN PUNICODE_STRING CurrentDirectory OPTIONAL,
IN PUNICODE_STRING CommandLine OPTIONAL,
IN ULONG CreationFlags,
IN PUNICODE_STRING WindowTitle OPTIONAL,
IN PUNICODE_STRING Desktop OPTIONAL,
IN PUNICODE_STRING Reserved OPTIONAL,
IN PUNICODE_STRING Reserved2 OPTIONAL
);

Parameters

ProcessParameters
Points to a variable that will receive a pointer to the process parameters if the call is
successful.

ImageFile
Optionally points to the image file name from which the process was created.

DllPath
Optionally points to the search path that was used to search for the image file and its
referenced DLLs.

CurrentDirectory
Optionally points to the current directory name of the process.

CommandLine
Optionally points to the command line used to start the process.

CreationFlags
A bit array of flags.

1996 CH06 11.24.99 09:54 Page 150

Processes: RtlDestroyProcessParameters 151

WindowTitle
Optionally points to a window title for the process.

Desktop
Optionally points to the name of the desktop used by the process.

Reserved
Related to STARTUPINFO.lpReserved. It is not used by Win32 subsystem.

Reserved2
Related to STARTUPINFO.cbReserved2 and STARTUPINFO.lpReserved2. It is not used by
Win32 subsystem.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
The process parameters are created by the caller of ZwCreateProcess and copied to
the new process.The process parameters contain pointers to strings, and to facilitate
copying of the data to a different virtual address (in another process), these pointers
are initially stored in normalized form (relative to the start of the structure). They are
converted to normal pointers after the copy is complete.

If an optional parameter is omitted, by specifying a null pointer, the parameter value is
copied from the process parameters of the current process, except for CommandLine,
which is copied from ImageFile.

The process parameters are pointed to by the PEB of a process.

RtlDestroyProcessParameters

RtlDestroyProcessParameters deallocates the data structure used to hold the user
mode process parameters.
NTSTATUS
NTAPI
RtlDestroyProcessParameters(

IN PPROCESS_PARAMETERS ProcessParameters
);

Parameters

ProcessParameters
Points to the process parameters to be deallocated.

1996 CH06 11.24.99 09:54 Page 151

Processes: RtlDestroyProcessParameters152

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
None.

PROCESS_PARAMETERS
typedef struct _PROCESS_PARAMETERS {

ULONG AllocationSize;
ULONG Size;
ULONG Flags;
ULONG Reserved;
LONG Console;
ULONG ProcessGroup;
HANDLE hStdInput;
HANDLE hStdOutput;
HANDLE hStdError;
UNICODE_STRING CurrentDirectoryName;
HANDLE CurrentDirectoryHandle;
UNICODE_STRING DllPath;
UNICODE_STRING ImageFile;
UNICODE_STRING CommandLine;
PWSTR Environment;
ULONG dwX;
ULONG dwY;
ULONG dwXSize;
ULONG dwYSize;
ULONG dwXCountChars;
ULONG dwYCountChars;
ULONG dwFillAttribute;
ULONG dwFlags;
ULONG wShowWindow;
UNICODE_STRING WindowTitle;
UNICODE_STRING Desktop;
UNICODE_STRING Reserved;
UNICODE_STRING Reserved2;

} PROCESS_PARAMETERS, *PPROCESS_PARAMETERS;

Members

AllocationSize
The size in bytes of virtual memory allocated to hold the process parameters.

Size
The size in bytes of virtual memory used to hold the process parameters.

Flags
A bit array of flags.

1996 CH06 11.24.99 09:54 Page 152

Processes: PROCESS_PARAMETERS 153

Reserved
Reserved; always contains zero.

Console
The numeric identifier of the console to be used by the new process.A value of -1
indicates that the process does not have access to a console, and a value of -2 indicates
that the process should be given access to a new console.

ProcessGroup
The numeric identifier of the process group of the process.

hStdInput
The handle that will be used as the standard input handle for the new process if
STARTF_USESTDHANDLES is specified in dwFlags.

hStdOutput
The handle that will be used as the standard output handle for the new process if
STARTF_USESTDHANDLES is specified in dwFlags.

hStdError
The handle that will be used as the standard error handle for the new process if
STARTF_USESTDHANDLES is specified in dwFlags.

CurrentDirectoryName
The name of the current directory of the process.

CurrentDirectoryHandle
The handle to the current directory of the process.

DllPath
The search path that was used to search for the image file of the process and its
referenced DLLs.

ImageFile
The image file name from which the process was created.

CommandLine
The command line used to start the process.

Environment
A pointer to the environment block of the process that contains the environment vari-
able strings.

dwX
The x offset, in pixels, of the upper left corner of a window if a new window is
created, and STARTF_USEPOSITION is specified in dwFlags.

1996 CH06 11.24.99 09:54 Page 153

Processes: PROCESS_PARAMETERS154

dwY
The y offset, in pixels, of the upper left corner of a window if a new window is created,
and STARTF_USEPOSITION is specified in dwFlags.

dwXSize
The width, in pixels, of a window if a new window is created, and STARTF_USESIZE is
specified in dwFlags.

dwYSize
The height, in pixels, of a window if a new window is created, and STARTF_USESIZE is
specified in dwFlags.

dwXCountChars
The width, in characters, of a screen buffer if a new console window is created, and
STARTF_USECOUNTCHARS is specified in dwFlags.

dwYCountChars
The height, in characters, of a screen buffer if a new console window is created, and
STARTF_USECOUNTCHARS is specified in dwFlags.

dwFillAttribute
The initial text and background colors if a new console window is created, and
STARTF_USEFILLATTRIBUTE is specified in dwFlags.

dwFlags
The bit field that determines whether certain PROCESS_PARAMETERS members are used
when the process creates a window.

wShowWindow
The show state if a new window is created, and STARTF_USESHOWWINDOW is specified in
dwFlags.

WindowTitle
The window title for the process.

Desktop
The name of the desktop used by the process.

Remarks
When using the Win32 function CreateProcess to create a process, many of the
fields of the PROCESS_PARAMETERS structure are initialized based on information in the
STARTUPINFO structure passed as argument to CreateProcess.

The following routines are not part of the Native API, but they gather information
about processes which is useful to debuggers and other clients of the ToolHelp library.

The routines are part of the RTL included in ntdll.dll.

1996 CH06 11.24.99 09:54 Page 154

Processes: RtlQueryProcessDebugInformation 155

RtlCreateQueryDebugBuffer

RtlCreateQueryDebugBuffer creates the data structure required by
RtlQueryProcessDebugInformation.
PDEBUG_BUFFER
NTAPI
RtlCreateQueryDebugBuffer(

IN ULONG Size,
IN BOOLEAN EventPair
);

Parameters

Size
Optionally specifies the size of the debug buffer. If Size is zero, a default size is used.

EventPair
Specifies whether an EventPair should be used to synchronize the retrieval of debug
information. If true, a thread will be created in the target process that will be used to
service each request for information. If false, a thread is created and destroyed in the
target process for each request.

Return Value
Returns a pointer to a DEBUG_BUFFER or a null pointer.

Related Win32 Functions
None.

Remarks
None.

RtlQueryProcessDebugInformation

RtlQueryProcessDebugInformation queries information about a process that is main-
tained in user mode.
NTSTATUS
NTAPI
RtlQueryProcessDebugInformation(

IN ULONG ProcessId,
IN ULONG DebugInfoClassMask,
IN OUT PDEBUG_BUFFER DebugBuffer
);

Parameters

ProcessId
Specifies the id of the process that is to be queried.

1996 CH06 11.24.99 09:54 Page 155

Processes: RtlQueryProcessDebugInformation156

DebugInfoClassMask
A bit array specifying which type of information is to be queried. Multiple types of
information can be retrieved in a single call.This parameter can be any combination of
the following flags:

PDI_MODULES 0x01 // The loaded modules of the process
PDI_BACKTRACE 0x02 // The heap stack back traces
PDI_HEAPS 0x04 // The heaps of the process
PDI_HEAP_TAGS 0x08 // The heap tags
PDI_HEAP_BLOCKS 0x10 // The heap blocks
PDI_LOCKS 0x20 // The locks created by the process

DebugBuffer
Points to an initialized DEBUG_BUFFER that will be updated to contain the requested
information.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
There are parallels between this information about processes and the information
returned by ZwQuerySystemInformation about the system. For example, heaps are a
process equivalent of system pools, and locks are a process equivalent of system
resources.

The reason that this information is retrieved with an RTL routine rather than a system
service is that the information is created and maintained entirely in user mode by
ntdll.dll—the kernel is unaware of its existence.

The information about modules and heaps can be used to implement the ToolHelp
functions that report on modules and heaps. Example 6.3 builds upon an earlier exam-
ple to add this functionality.

PSAPI does not use RtlQueryProcessDebugInformation to retrieve process module
information. It directly reads and interprets the virtual memory used by ntdll.dll to
store the information.

RtlDestroyQueryDebugBuffer

RtlDestroyQueryDebugBuffer deallocates the data structure used by
RtlQueryProcessDebugInformation.
NTSTATUS
NTAPI
RtlDestroyQueryDebugBuffer(

IN PDEBUG_BUFFER DebugBuffer
);

1996 CH06 11.24.99 09:54 Page 156

Processes: DEBUG_BUFFER 157

Parameters

DebugBuffer
Points to the debug buffer to be deallocated.

Return Value
Returns STATUS_SUCCESS.

Related Win32 Functions
None.

Remarks
If there is a thread in a target process still waiting to service query requests, it is first
terminated, and its stack deallocated.

DEBUG_BUFFER
typedef struct _DEBUG_BUFFER {

HANDLE SectionHandle;
PVOID SectionBase;
PVOID RemoteSectionBase;
ULONG SectionBaseDelta;
HANDLE EventPairHandle;
ULONG Unknown[2];
HANDLE RemoteThreadHandle;
ULONG InfoClassMask;
ULONG SizeOfInfo;
ULONG AllocatedSize;
ULONG SectionSize;
PVOID ModuleInformation;
PVOID BackTraceInformation;
PVOID HeapInformation;
PVOID LockInformation;
PVOID Reserved[8];

} DEBUG_BUFFER, *PDEBUG_BUFFER;

Members

ModuleInformation
A pointer to the module information if this was requested.The data pointed to by
ModuleInformation is a ULONG count of the number of modules followed immediately
by an array of DEBUG_MODULE_INFORMATION.

BackTraceInformation
A pointer to the heap stack back-trace information if this was requested.

HeapInformation
A pointer to the heap information if this was requested.The data pointed to by
HeapInformation is a ULONG count of the number of heaps followed immediately by an
array of DEBUG_HEAP_INFORMATION.

1996 CH06 11.24.99 09:54 Page 157

Processes: DEBUG_BUFFER158

LockInformation
A pointer to the lock information if this was requested.The data pointed to by
LockInformation is a ULONG count of the number of locks followed immediately by an
array of DEBUG_LOCK_INFORMATION.

Remarks
The other members of DEBUG_BUFFER are opaque.
typedef struct _DEBUG_MODULE_INFORMATION { // c.f. SYSTEM_MODULE_INFORMATION

ULONG Reserved[2];
ULONG Base;
ULONG Size;
ULONG Flags;
USHORT Index;
USHORT Unknown;
USHORT LoadCount;
USHORT ModuleNameOffset;
CHAR ImageName[256];

} DEBUG_MODULE_INFORMATION, *PDEBUG_MODULE_INFORMATION;

Members

Base
The base address of the module.

Size
The size of the module.

Flags
A bit array of flags describing the state of the module. Observed values include:

LDRP_STATIC_LINK 0x00000002
LDRP_IMAGE_DLL 0x00000004
LDRP_LOAD_IN_PROGRESS 0x00001000
LDRP_UNLOAD_IN_PROGRESS 0x00002000
LDRP_ENTRY_PROCESSED 0x00004000
LDRP_ENTRY_INSERTED 0x00008000
LDRP_CURRENT_LOAD 0x00010000
LDRP_FAILED_BUILTIN_LOAD 0x00020000
LDRP_DONT_CALL_FOR_THREADS 0x00040000
LDRP_PROCESS_ATTACH_CALLED 0x00080000
LDRP_DEBUG_SYMBOLS_LOADED 0x00100000
LDRP_IMAGE_NOT_AT_BASE 0x00200000
LDRP_WX86_IGNORE_MACHINETYPE 0x00400000

Index
The index of the module in the array of modules.

Unknown
Interpretation unknown.

LoadCount
The number of references to the module.

1996 CH06 11.24.99 09:54 Page 158

Processes: DEBUG_BUFFER 159

ModuleNameOffset
The offset to the final filename component of the image name.

ImageName
The filepath of the module.

Remarks
None.
typedef struct _DEBUG_HEAP_INFORMATION {

ULONG Base;
ULONG Flags;
USHORT Granularity;
USHORT Unknown;
ULONG Allocated;
ULONG Committed;
ULONG TagCount;
ULONG BlockCount;
ULONG Reserved[7];
PVOID Tags;
PVOID Blocks;

} DEBUG_HEAP_INFORMATION, *PDEBUG_HEAP_INFORMATION;

Members

Base
The base address of the heap.

Flags
A bit array of flags describing heap options.

Granularity
The granularity of allocation from the heap.

Unknown
Interpretation unknown.

Allocated
The size in bytes of memory allocated from the heap.

Committed
The size in bytes of the memory committed to the heap.

TagCount
The number of tags pointed to by Tags.

BlockCount
The number of blocks pointed to by Blocks.

1996 CH06 11.24.99 09:54 Page 159

Processes: DEBUG_BUFFER160

Tags
A pointer to an array of tag information. Heap tags are used to track the usage of heap
blocks.

Blocks
A pointer to an array of block information.

Remarks
The flags PDI_HEAP_TAGS and PDI_HEAP_BLOCKS must be specified in addition to
PDI_HEAPS if information on heap tags or blocks is required.
typedef struct _DEBUG_LOCK_INFORMATION { // c.f. SYSTEM_LOCK_INFORMATION

PVOID Address;
USHORT Type;
USHORT CreatorBackTraceIndex;
ULONG OwnerThreadId;
ULONG ActiveCount;
ULONG ContentionCount;
ULONG EntryCount;
ULONG RecursionCount;
ULONG NumberOfSharedWaiters;
ULONG NumberOfExclusiveWaiters;

} DEBUG_LOCK_INFORMATION, *PDEBUG_LOCK_INFORMATION;

Members

Address
The address of the lock structure.

Type
The type of the lock.This is either RTL_CRITSECT_TYPE (0) or RTL_RESOURCE_TYPE (1).

CreatorBackTraceIndex
Normally contains zero.

OwnerThreadId
The thread identifier of the owner of the lock (the exclusive owner if the lock is a
resource).

ActiveCount
The number of threads granted access to the lock. Critical sections count from -1, and
resources count from 0.

ContentionCount
The number of times a thread had to wait for the lock.

EntryCount
The number of times a critical section has been entered.This does not include the
number of times that the critical section was entered without waiting.

RecursionCount

1996 CH06 11.24.99 09:54 Page 160

Processes: Example 6.1 161

The number of times a thread has recursively entered a critical section.

NumberOfSharedWaiters
The number of threads waiting for shared access to the resource.

NumberOfExclusiveWaiters
The number of threads waiting for exclusive access to the resource.

Remarks
There are two types of user mode locks: critical sections and resources.The resource
lock is similar in functionality to the kernel mode resource lock and provides multiple
reader, single writer functionality.

Example 6.1: Forking a Win32 Process
#include “ntdll.h”
#include <stdio.h>

namespace NT {
extern “C” {

NTSTATUS
NTAPI
CsrClientCallServer(

IN PVOID Message,
IN PVOID,
IN ULONG Opcode,
IN ULONG Size
);

}
}

VOID InheritAll()
{

ULONG n = 0x1000;
PULONG p = new ULONG[n];

while (NT::ZwQuerySystemInformation(NT::SystemHandleInformation,
p, n * sizeof *p, 0)

== STATUS_INFO_LENGTH_MISMATCH)
delete [] p, p = new ULONG[n *= 2];

NT::PSYSTEM_HANDLE_INFORMATION h = NT::PSYSTEM_HANDLE_INFORMATION(p + 1);

ULONG pid = GetCurrentProcessId();

for (ULONG i = 0; i < *p; i++)
if (h[i].ProcessId == pid)

SetHandleInformation(HANDLE(h[i].Handle),
HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT);

delete [] p;
}

VOID InformCsrss(HANDLE hProcess, HANDLE hThread, ULONG pid, ULONG tid)
{

struct CSRSS_MESSAGE {

1996 CH06 11.24.99 09:54 Page 161

Processes: Example 6.1162

ULONG Unknown1;
ULONG Opcode;
ULONG Status;
ULONG Unknown2;

};

struct {
NT::PORT_MESSAGE PortMessage;
CSRSS_MESSAGE CsrssMessage;
PROCESS_INFORMATION ProcessInformation;
NT::CLIENT_ID Debugger;
ULONG CreationFlags;
ULONG VdmInfo[2];

} csrmsg = {{0}, {0}, {hProcess, hThread, pid, tid}, {0}, 0, {0}};

NT::CsrClientCallServer(&csrmsg, 0, 0x10000, 0x24);
}

__declspec(naked) int child()
{

typedef BOOL (WINAPI *CsrpConnectToServer)(PWSTR);

CsrpConnectToServer(0x77F8F65D)(L”\\Windows”);
__asm mov eax, 0
__asm mov esp, ebp
__asm pop ebp
__asm ret

}

#pragma optimize(“y”, off) // disable frame pointer omission

int fork()
{

HANDLE hProcess, hThread;

InheritAll();

NT::OBJECT_ATTRIBUTES oa = {sizeof oa};

NT::ZwCreateProcess(&hProcess, PROCESS_ALL_ACCESS, &oa,
NtCurrentProcess(), TRUE, 0, 0, 0);

NT::CONTEXT context = {CONTEXT_FULL
| CONTEXT_DEBUG_REGISTERS
| CONTEXT_FLOATING_POINT};

NT::ZwGetContextThread(NtCurrentThread(), &context);

context.Eip = ULONG(child);

MEMORY_BASIC_INFORMATION mbi;

NT::ZwQueryVirtualMemory(NtCurrentProcess(), PVOID(context.Esp),
NT::MemoryBasicInformation, &mbi, sizeof mbi, 0);

NT::USER_STACK stack = {0, 0, PCHAR(mbi.BaseAddress) + mbi.RegionSize,
mbi.BaseAddress, mbi.AllocationBase};

NT::CLIENT_ID cid;

NT::ZwCreateThread(&hThread, THREAD_ALL_ACCESS, &oa,

1996 CH06 11.24.99 09:54 Page 162

Processes: Example 6.1: Forking a Win32 Process 163

hProcess, &cid, &context, &stack, TRUE);

NT::THREAD_BASIC_INFORMATION tbi;

NT::ZwQueryInformationThread(NtCurrentThread(),
NT::ThreadBasicInformation,
&tbi, sizeof tbi, 0);

NT::PNT_TIB tib = tbi.TebBaseAddress;

NT::ZwQueryInformationThread(hThread, NT::ThreadBasicInformation,
&tbi, sizeof tbi, 0);

NT::ZwWriteVirtualMemory(hProcess, tbi.TebBaseAddress,
&tib->ExceptionList, sizeof tib->ExceptionList,
0);

InformCsrss(hProcess, hThread,
ULONG(cid.UniqueProcess), ULONG(cid.UniqueThread));

NT::ZwResumeThread(hThread, 0);

NT::ZwClose(hThread);
NT::ZwClose(hProcess);

return int(cid.UniqueProcess);
}

#pragma optimize(“”, on)

int main()
{

int n = fork();
Sleep(n * 10);
Beep(100, 100);
printf(“%d\n”, n);
return 0;

}

There is much about Example 6.1 that needs explaining.The main part of the exam-
ple implements a fork library routine that is exercised by the function main.

main first tries to report the success or failure of the fork using the minimum of func-
tionality by beeping the system beeper; if the fork is successful, two beeps should be
heard. main then tries to print the return value of fork on its standard output, which
requires communication with the Win32 subsystem process (csrss.exe) if the standard
output is a console.

The following steps are taken by the fork routine to make a copy of the current
process:

n Mark all the open handles of the process as inheritable.Typically, neither the han-
dles created explicitly by a Win32 program, nor the handles created implicitly by
Win32 DLLs such as kernel32.dll are marked as inheritable.

n Call ZwCreateProcess to create the process. If this call returns successfully, a new
process has been created that shares a copy of the address space of the current
process.

1996 CH06 11.24.99 09:54 Page 163

Processes: Example 6.1164

n Gather the information needed by ZwCreateThread to create the initial thread in
the process: an execution context and a stack.The execution context is obtained
by calling ZwGetContextThread for the current thread.Although the Platform SDK
documentation for GetThreadContext states that it is not possible to get a valid
context for a running thread, the returned context is a good starting point and
the most volatile members of the context are explicitly set later.The dimensions
of the stack of the current thread are obtained by calling ZwQueryVirtualMemory.

n Update the Eip (instruction pointer) member of the context to point to the
thunk (a routine named child) at which the initial thread will start running and
then create the thread in a suspended state by calling ZwCreateThread.

n The calling thread may have established some frame-based exception handlers and
the next step is to enable these in the new thread by copying the ExceptionList
pointer from the Thread Environment Block (TEB) of the current thread to the
TEB of new thread.

n InformCsrss informs the Win32 subsystem that a Win32 client process is about to
start; this gives the subsystem the opportunity to modify some settings of the
process, such as setting process debug and exception ports.

n Resume the initial thread in the forked process by calling ZwResumeThread, and
return the process identifier of the new process to the caller.

InformCsrss just initializes a data structure and calls the routine CsrClientCallServer
(exported by ntdll.dll) to forward the data to csrss.exe. Internally CsrClientCallServer
uses the native LPC mechanism to convey the data.

The initial thread in the new process starts execution at the start of the child routine.
This __declspec(naked) routine expects that a standard call frame has been established
by fork (hence, the “#pragma optimize(“y”, off)” to disable frame pointer omission
for the routine fork) that enables the Esp and Ebp registers to be set with some simple
assembly code.A zero is stored in Eax so that when the child process checks the return
value of fork, it will find that it is zero.

When kernel32.dll is initialized in the new process, it calls a CsrXxx routine that checks
whether the process is connected to a subsystem and if not connects it. Unfortunately,
the check just examines the value of a global variable and, because this variable was
copied from the parent (along with the rest of the parent’s address space), it appears
that the new process is already connected.

There is no good solution to this problem, and the example calls a hexadecimal
address (which varies from service pack to service pack) that is the start of the private
routine CsrpConnectToServer; this routine connects unconditionally to the subsystem
and updates the global variable.

ntdll.dll exports a number of routines whose names start with Csr; the function of
these routines is to support interaction between clients and subsystems. It is difficult to
decide whether these routines are specific to communication with the Win32 subsys-
tem or are intended to be used more widely.They are not used by the Posix or OS/2
subsystems, but they are parameterized in a way that suggests generality (for example,
the “\Windows” argument to CsrpConnectToServer, which is used to identify a named
LPC port to which the subsystem is listening).

1996 CH06 11.24.99 09:54 Page 164

Processes: Example 6.2 165

When Example 6.1 is compiled and linked, its executable file contains imports from
two or three DLLs: ntdll.dll, kernel32.dll and possibly a C run-time library DLL. Some
versions of msvcrt.dll (a C run-time library DLL) also have problems arising from
global variables already having been initialized (by the parent process) before their
DllEntryPoint routine is first invoked. Statically linking to the C run-time library
often solves this problem, but it bodes ill for the suitability of many other common
DLLs for forking.

Example 6.2: Creating a Win32 Process
#include “ntdll.h”
#include <stdio.h>

namespace NT {
extern “C” {

NTSTATUS
NTAPI
CsrClientCallServer(

IN PVOID Message,
IN PVOID,
IN ULONG Opcode,
IN ULONG Size
);

}
}

VOID InformCsrss(HANDLE hProcess, HANDLE hThread, ULONG pid, ULONG tid)
{

struct CSRSS_MESSAGE {
ULONG Unknown1;
ULONG Opcode;
ULONG Status;
ULONG Unknown2;

};

struct {
NT::PORT_MESSAGE PortMessage;
CSRSS_MESSAGE CsrssMessage;
PROCESS_INFORMATION ProcessInformation;
NT::CLIENT_ID Debugger;
ULONG CreationFlags;
ULONG VdmInfo[2];

} csrmsg = {{0}, {0}, {hProcess, hThread, pid, tid}, {0}, 0, {0}};

NT::CsrClientCallServer(&csrmsg, 0, 0x10000, 0x24);
}

PWSTR CopyEnvironment(HANDLE hProcess)
{

PWSTR env = GetEnvironmentStringsW();

ULONG n;
for (n = 0; env[n] != 0; n += wcslen(env + n) + 1) ; n *= sizeof *env;

ULONG m = n;
PVOID p = 0;
NT::ZwAllocateVirtualMemory(hProcess, &p, 0, &m,

MEM_COMMIT, PAGE_READWRITE);

1996 CH06 11.24.99 09:54 Page 165

Processes: Example 6.2166

NT::ZwWriteVirtualMemory(hProcess, p, env, n, 0);

return PWSTR(p);
}

VOID CreateProcessParameters(HANDLE hProcess, NT::PPEB Peb,
NT::PUNICODE_STRING ImageFile)

{
NT::PPROCESS_PARAMETERS pp;

NT::RtlCreateProcessParameters(&pp, ImageFile, 0, 0, 0, 0, 0, 0, 0, 0);

pp->Environment = CopyEnvironment(hProcess);

ULONG n = pp->Size;
PVOID p = 0;
NT::ZwAllocateVirtualMemory(hProcess, &p, 0, &n,

MEM_COMMIT, PAGE_READWRITE);

NT::ZwWriteVirtualMemory(hProcess, p, pp, pp->Size, 0);

NT::ZwWriteVirtualMemory(hProcess, PCHAR(Peb) + 0x10, &p, sizeof p, 0);

NT::RtlDestroyProcessParameters(pp);
}

int exec(NT::PUNICODE_STRING name)
{

HANDLE hProcess, hThread, hSection, hFile;

NT::OBJECT_ATTRIBUTES oa = {sizeof oa, 0, name, OBJ_CASE_INSENSITIVE};
NT::IO_STATUS_BLOCK iosb;
NT::ZwOpenFile(&hFile, FILE_EXECUTE | SYNCHRONIZE, &oa, &iosb,

FILE_SHARE_READ, FILE_SYNCHRONOUS_IO_NONALERT);

oa.ObjectName = 0;

NT::ZwCreateSection(&hSection, SECTION_ALL_ACCESS, &oa, 0,
PAGE_EXECUTE, SEC_IMAGE, hFile);

NT::ZwClose(hFile);

NT::ZwCreateProcess(&hProcess, PROCESS_ALL_ACCESS, &oa,
NtCurrentProcess(), TRUE, hSection, 0, 0);

NT::SECTION_IMAGE_INFORMATION sii;
NT::ZwQuerySection(hSection, NT::SectionImageInformation,

&sii, sizeof sii, 0);

NT::ZwClose(hSection);

NT::USER_STACK stack = {0};

ULONG n = sii.StackReserve;
NT::ZwAllocateVirtualMemory(hProcess, &stack.ExpandableStackBottom, 0, &n,

MEM_RESERVE, PAGE_READWRITE);

stack.ExpandableStackBase = PCHAR(stack.ExpandableStackBottom)
+ sii.StackReserve;

stack.ExpandableStackLimit = PCHAR(stack.ExpandableStackBase)
- sii.StackCommit;

1996 CH06 11.24.99 09:54 Page 166

Processes: Example 6.2 167

n = sii.StackCommit + PAGE_SIZE;
PVOID p = PCHAR(stack.ExpandableStackBase) - n;
NT::ZwAllocateVirtualMemory(hProcess, &p, 0, &n,

MEM_COMMIT, PAGE_READWRITE);

ULONG x; n = PAGE_SIZE;
NT::ZwProtectVirtualMemory(hProcess, &p, &n,

PAGE_READWRITE | PAGE_GUARD, &x);

NT::CONTEXT context = {CONTEXT_FULL};
context.SegGs = 0;
context.SegFs = 0x38;
context.SegEs = 0x20;
context.SegDs = 0x20;
context.SegSs = 0x20;
context.SegCs = 0x18;
context.EFlags = 0x3000;
context.Esp = ULONG(stack.ExpandableStackBase) - 4;
context.Eip = ULONG(sii.EntryPoint);

NT::CLIENT_ID cid;

NT::ZwCreateThread(&hThread, THREAD_ALL_ACCESS, &oa,
hProcess, &cid, &context, &stack, TRUE);

NT::PROCESS_BASIC_INFORMATION pbi;
NT::ZwQueryInformationProcess(hProcess, NT::ProcessBasicInformation,

&pbi, sizeof pbi, 0);

CreateProcessParameters(hProcess, pbi.PebBaseAddress, name);

InformCsrss(hProcess, hThread,
ULONG(cid.UniqueProcess), ULONG(cid.UniqueThread));

NT::ZwResumeThread(hThread, 0);

NT::ZwClose(hProcess);
NT::ZwClose(hThread);

return int(cid.UniqueProcess);
}

#pragma comment(linker, “-entry:wmainCRTStartup”)
extern “C”
int wmain(int argc, wchar_t *argv[])
{

NT::UNICODE_STRING ImageFile;
NT::RtlInitUnicodeString(&ImageFile, argv[1]);

exec(&ImageFile);

return 0;
}

Example 6.2 demonstrates how to create a process from an executable PE format file.
The argument to the program is the full path in the native NT format of the executable
file.To start notepad the argument could be “\SystemRoot\System32\notepad.exe”.

1996 CH06 11.24.99 09:54 Page 167

Processes: Example 6.2168

The following steps are taken by the exec routine to create a new process running a
specific image file:

n Open the executable file, and create an image section from it by calling
ZwCreateSection with an argument of SEC_IMAGE. Once the section has been cre-
ated, the file can be closed.

n Call ZwCreateProcess to create the process. If this call returns successfully, a new
process has been created that has the image section and ntdll.dll mapped into its
address space.

n Call ZwQuerySection to obtain information about the image, such as its entry
point and suggested stack size. Once this information has been obtained, the sec-
tion handle can be closed, because the section is now referenced by the new
process.

n Create the user mode stack. ZwAllocateVirtualMemory is used to perform the allo-
cations, and ZwProtectVirtualMemory is used to establish a guard page at the end
of the committed region of the stack.

n Establish the execution context of the initial thread by storing fixed values into
the CONTEXT structure and updating the stack pointer (Esp) to point to the new
stack and the instruction pointer (Eip) to point to the entry point of the image.
The Win32 functions CreateProcess and CreateThread set Eip to the address of a
thunk in kernel32.dll that establishes a frame-based exception handler before
calling the image entry point, but this example does not bother with that
refinement.

n Create the initial thread in a suspended state by calling ZwCreateThread.

n Create and copy the process parameters (including process environment) to the
new process and update the PEB of the new process to point to them.

n InformCsrss informs the Win32 subsystem that a Win32 client process is about to
start; this gives the subsystem the opportunity to modify some settings of the
process, such as setting process debug and exception ports.

n Resume the initial thread in the new process by calling ZwResumeThread.

At any time after the creation of the process and before resuming the initial thread, the
process parameters can be created.The process parameters contain process information
that is maintained and manipulated in user mode such as the current directory, the
command line, the environment, and so on. Most values can be copied from the cur-
rent process.

First the environment is copied to the new process, then the process parameters them-
selves (which contain a pointer to the environment), and finally the PEB of the new
process is patched to point to the process parameters.

1996 CH06 11.24.99 09:54 Page 168

Processes: Example 6.3 169

Example 6.3: Using RtlQueryProcessDebugInformation to
extend ToolHelp Library Implementation
#include “ntdll.h”
#include <tlhelp32.h>
#include <stdlib.h>
#include <stdio.h>

struct ENTRIES {
ULONG Offset;
ULONG Count;
ULONG Index;
ENTRIES() : Offset(0), Count(0), Index(0) {}
ENTRIES(ULONG m, ULONG n) : Offset(m), Count(n), Index(0) {}

};

enum EntryType {
ProcessType,
ThreadType,
ModuleType,
HeapType,
MaxType

};

NT::PSYSTEM_PROCESSES GetProcessesAndThreads()
{

ULONG n = 0x100;
NT::PSYSTEM_PROCESSES sp = new NT::SYSTEM_PROCESSES[n];

while (NT::ZwQuerySystemInformation(
NT::SystemProcessesAndThreadsInformation,
sp, n * sizeof *sp, 0)

== STATUS_INFO_LENGTH_MISMATCH)
delete [] sp, sp = new NT::SYSTEM_PROCESSES[n = n * 2];

return sp;
}

NT::PDEBUG_BUFFER GetModulesAndHeaps(ULONG pid, ULONG mask)
{

NT::PDEBUG_BUFFER db = NT::RtlCreateQueryDebugBuffer(0, FALSE);
NT::RtlQueryProcessDebugInformation(pid, mask, db);
return db;

}

ULONG ProcessCount(NT::PSYSTEM_PROCESSES sp)
{

ULONG n = 0;
bool done = false;

for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta))
n++, done = p->NextEntryDelta == 0;

return n;
}

ULONG ThreadCount(NT::PSYSTEM_PROCESSES sp)
{

ULONG n = 0;
bool done = false;

for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta))

1996 CH06 11.24.99 09:54 Page 169

Processes: Example 6.3170

n += p->ThreadCount, done = p->NextEntryDelta == 0;
return n;

}

ULONG ModuleCount(NT::PDEBUG_BUFFER db)
{

return db->ModuleInformation ? *PULONG(db->ModuleInformation) : 0;
}

ULONG HeapCount(NT::PDEBUG_BUFFER db)
{

return db->HeapInformation ? *PULONG(db->HeapInformation) : 0;
}

VOID AddProcesses(PPROCESSENTRY32 pe, NT::PSYSTEM_PROCESSES sp)
{

bool done = false;

for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta)) {

pe->dwSize = sizeof *pe;
pe->cntUsage = 0;
pe->th32ProcessID = p->ProcessId;
pe->th32DefaultHeapID = 0;
pe->th32ModuleID = 0;
pe->cntThreads = p->ThreadCount;
pe->th32ParentProcessID = p->InheritedFromProcessId;
pe->pcPriClassBase = p->BasePriority;
pe->dwFlags = 0;
sprintf(pe->szExeFile, “%.*ls”,

p->ProcessName.Length / 2, p->ProcessName.Buffer);

pe++;

done = p->NextEntryDelta == 0;
}

}

VOID AddThreads(PTHREADENTRY32 te, NT::PSYSTEM_PROCESSES sp)
{

bool done = false;

for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta)) {

for (ULONG i = 0; i < p->ThreadCount; i++) {

te->dwSize = sizeof *te;
te->cntUsage = 0;
te->th32ThreadID = DWORD(p->Threads[i].ClientId.UniqueThread);
te->th32OwnerProcessID = p->ProcessId;
te->tpBasePri = p->Threads[i].BasePriority;
te->tpDeltaPri = p->Threads[i].Priority

- p->Threads[i].BasePriority;
te->dwFlags = 0;

te++;
}

done = p->NextEntryDelta == 0;
}

}

1996 CH06 11.24.99 09:54 Page 170

Processes: Example 6.3 171

VOID AddModules(PMODULEENTRY32 me, NT::PDEBUG_BUFFER db, ULONG pid)
{

ULONG n = ModuleCount(db);
NT::PDEBUG_MODULE_INFORMATION p

= NT::PDEBUG_MODULE_INFORMATION(PULONG(db->ModuleInformation) + 1);

for (ULONG i = 0; i < n; i++) {

me->dwSize = sizeof *me;
me->th32ModuleID = 0;
me->th32ProcessID = pid;
me->GlblcntUsage = p[i].LoadCount;
me->ProccntUsage = p[i].LoadCount;
me->modBaseAddr = PBYTE(p[i].Base);
me->modBaseSize = p[i].Size;
me->hModule = HMODULE(p[i].Base);
sprintf(me->szModule, “%s”, p[i].ImageName + p[i].ModuleNameOffset);
sprintf(me->szExePath, “%s”, p[i].ImageName);

me++;
}

}

VOID AddHeaps(PHEAPLIST32 hl, NT::PDEBUG_BUFFER db, ULONG pid)
{

ULONG n = HeapCount(db);
NT::PDEBUG_HEAP_INFORMATION p

= NT::PDEBUG_HEAP_INFORMATION(PULONG(db->HeapInformation) + 1);

for (ULONG i = 0; i < n; i++) {

hl->dwSize = sizeof *hl;
hl->th32ProcessID = pid;
hl->th32HeapID = p[i].Base;
hl->dwFlags = p[i].Flags;

hl++;
}

}

template<class T>
BOOL GetEntry(HANDLE hSnapshot, T entry, bool first, EntryType type)
{

ENTRIES *entries = (ENTRIES*)MapViewOfFile(hSnapshot, FILE_MAP_WRITE,
0, 0, 0);

if (entries == 0) return FALSE;

BOOL rv = TRUE;

entries[type].Index = first ? 0 : entries[type].Index + 1;

if (entries[type].Index >= entries[type].Count)
SetLastError(ERROR_NO_MORE_FILES), rv = FALSE;

if (entry->dwSize < sizeof *entry)
SetLastError(ERROR_INSUFFICIENT_BUFFER), rv = FALSE;

if (rv)
*entry = T(PCHAR(entries)

+ entries[type].Offset)[entries[type].Index];

1996 CH06 11.24.99 09:54 Page 171

Processes: Example 6.3172

UnmapViewOfFile(entries);
return rv;

}

HANDLE
WINAPI
CreateToolhelp32Snapshot(DWORD flags, DWORD pid)
{

if (pid == 0) pid = GetCurrentProcessId();

ULONG mask = ((flags & TH32CS_SNAPMODULE) ? PDI_MODULES : 0) |
((flags & TH32CS_SNAPHEAPLIST) ? PDI_HEAPS : 0);

NT::PDEBUG_BUFFER db =
(flags & (TH32CS_SNAPMODULE | TH32CS_SNAPHEAPLIST))

? GetModulesAndHeaps(pid, mask) : 0;

NT::PSYSTEM_PROCESSES sp =
(flags & (TH32CS_SNAPPROCESS | TH32CS_SNAPTHREAD))

? GetProcessesAndThreads() : 0;

ENTRIES entries[MaxType];
ULONG n = sizeof entries;

if (flags & TH32CS_SNAPPROCESS) {
entries[ProcessType] = ENTRIES(n, ProcessCount(sp));
n += entries[ProcessType].Count * sizeof (PROCESSENTRY32);

}
if (flags & TH32CS_SNAPTHREAD) {

entries[ThreadType] = ENTRIES(n, ThreadCount(sp));
n += entries[ThreadType].Count * sizeof (THREADENTRY32);

}
if (flags & TH32CS_SNAPMODULE) {

entries[ModuleType] = ENTRIES(n, ModuleCount(db));
n += entries[ModuleType].Count * sizeof (MODULEENTRY32);

}
if (flags & TH32CS_SNAPHEAPLIST) {

entries[HeapType] = ENTRIES(n, HeapCount(db));
n += entries[HeapType].Count * sizeof (HEAPLIST32);

}

SECURITY_ATTRIBUTES sa = {sizeof sa, 0, (flags & TH32CS_INHERIT) != 0};

HANDLE hMap = CreateFileMapping(HANDLE(0xFFFFFFFF), &sa,
PAGE_READWRITE | SEC_COMMIT, 0, n, 0);

ENTRIES *p = (ENTRIES*)MapViewOfFile(hMap, FILE_MAP_WRITE, 0, 0, 0);

for (int i = 0; i < MaxType; i++) p[i] = entries[i];

if (flags & TH32CS_SNAPPROCESS)
AddProcesses(PPROCESSENTRY32(PCHAR(p) + entries[ProcessType].Offset),

sp);
if (flags & TH32CS_SNAPTHREAD)

AddThreads(PTHREADENTRY32(PCHAR(p) + entries[ThreadType].Offset),
sp);

if (flags & TH32CS_SNAPMODULE)
AddModules(PMODULEENTRY32(PCHAR(p) + entries[ModuleType].Offset),

db, pid);
if (flags & TH32CS_SNAPHEAPLIST)

AddHeaps(PHEAPLIST32(PCHAR(p) + entries[HeapType].Offset),
db, pid);

1996 CH06 11.24.99 09:54 Page 172

Processes: Example 6.3 173

UnmapViewOfFile(p);

if (sp) delete [] sp;

if (db) NT::RtlDestroyQueryDebugBuffer(db);

return hMap;
}

BOOL
WINAPI
Process32First(HANDLE hSnapshot, PPROCESSENTRY32 pe)
{

return GetEntry(hSnapshot, pe, true, ProcessType);
}

BOOL
WINAPI
Process32Next(HANDLE hSnapshot, PPROCESSENTRY32 pe)
{

return GetEntry(hSnapshot, pe, false, ProcessType);
}

BOOL
WINAPI
Thread32First(HANDLE hSnapshot, PTHREADENTRY32 te)
{

return GetEntry(hSnapshot, te, true, ThreadType);
}

BOOL
WINAPI
Thread32Next(HANDLE hSnapshot, PTHREADENTRY32 te)
{

return GetEntry(hSnapshot, te, false, ThreadType);
}

BOOL
WINAPI
Module32First(HANDLE hSnapshot, PMODULEENTRY32 me)
{

return GetEntry(hSnapshot, me, true, ModuleType);
}

BOOL
WINAPI
Module32Next(HANDLE hSnapshot, PMODULEENTRY32 me)
{

return GetEntry(hSnapshot, me, false, ModuleType);
}

BOOL
WINAPI
Heap32ListFirst(HANDLE hSnapshot, PHEAPLIST32 hl)
{

return GetEntry(hSnapshot, hl, true, HeapType);
}

BOOL
WINAPI
Heap32ListNext(HANDLE hSnapshot, PHEAPLIST32 hl)
{

return GetEntry(hSnapshot, hl, false, HeapType);
}

1996 CH06 11.24.99 09:54 Page 173

Processes: Example 6.3174

Example 6.3 extends Example 1.1 in Chapter 1,“System Information and Control,” to
provide support for retrieving module and heap information.The code implements
ANSI (rather than Unicode) versions of the routines and, apart from the routines to
implement enumerating heap entries, is an almost complete implementation of the
ToolHelp library.

1996 CH06 11.24.99 09:54 Page 174

7
Jobs

The system services described in this chapter create and manipulate job objects. Job
objects are only available in Windows 2000.

ZwCreateJobObject

ZwCreateJobObject creates or opens a job object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateJobObject(

OUT PHANDLE JobHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

JobHandle
Points to a variable that will receive the job object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the job object.This parameter
can be zero, or any combination of the following flags:

JOB_OBJECT_ASSIGN_PROCESS Add process to job
JOB_OBJECT_SET_ATTRIBUTES Set job attributes
JOB_OBJECT_QUERY Query job attributes
JOB_OBJECT_TERMINATE Terminate job
JOB_OBJECT_SET_SECURITY_ATTRIBUTES Set job security attributes
JOB_OBJECT_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes.

1996 CH07 11/19/99 12:26 PM Page 1

Jobs: ZwCreateJobObject2

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
CreateJobObject.

Remarks
The routine ZwCreateJobObject is only present in Windows 2000.

ZwOpenJobObject

ZwOpenJobObject opens a job object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenJobObject(

OUT PHANDLE JobHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

JobHandle
Points to a variable that will receive the job object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the job object.This parameter
can be zero, or any combination of the following flags:

JOB_OBJECT_ASSIGN_PROCESS Add process to job
JOB_OBJECT_SET_ATTRIBUTES Set job attributes
JOB_OBJECT_QUERY Query job attributes
JOB_OBJECT_TERMINATE Terminate job
JOB_OBJECT_SET_SECURITY_ATTRIBUTES Set job security attributes
JOB_OBJECT_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
OpenJobObject.

Remarks
The routine ZwOpenJobObject is only present in Windows 2000.

1996 CH07 11/19/99 12:26 PM Page 2

Jobs: ZwAssignProcessToJobObject 3

ZwTerminateJobObject

ZwTerminateJobObject terminates a job and the processes and threads that it contains.
NTSYSAPI
NTSTATUS
NTAPI
ZwTerminateJobObject(

IN HANDLE JobHandle,
IN NTSTATUS ExitStatus
);

Parameters

JobHandle
A handle to a job object.The handle must grant JOB_OBJECT_TERMINATE access.

ExitStatus
Specifies the exit status for all processes and terminated as a result of this call.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
TerminateJobObject.

Remarks
TerminateJobObject exposes the full functionality of ZwTerminateJobObject.

The routine ZwTerminateJobObject is only present in Windows 2000.

ZwAssignProcessToJobObject

ZwAssignProcessToJobObject associates a process with a job.
NTSYSAPI
NTSTATUS
NTAPI
ZwAssignProcessToJobObject(

IN HANDLE JobHandle,
IN HANDLE ProcessHandle
);

Parameters

JobHandle
A handle to a job object.The handle must grant JOB_OBJECT_ASSIGN_PROCESS access.

ProcessHandle
A handle to a process object.The handle must grant PROCESS_SET_QUOTA and
PROCESS_TERMINATE access.

1996 CH07 11/19/99 12:26 PM Page 3

Jobs: ZwAssignProcessToJobObject4

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
AssignProcessToJobObject.

Remarks
AssignProcessToJobObject exposes the full functionality of
ZwAssignProcessToJobObject.

The routine ZwAssignProcessToJobObject is only present in Windows 2000.

ZwQueryInformationJobObject

ZwQueryInformationJobObject retrieves information about a job object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryInformationJobObject(

IN HANDLE JobHandle,
IN JOBOBJECTINFOCLASS JobInformationClass,
OUT PVOID JobInformation,
IN ULONG JobInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

JobHandle
A handle to a job object.The handle must grant JOB_OBJECT_QUERY access.

JobInformationClass
Specifies the type of job information to be queried.The permitted values are drawn
from the enumeration JOBOBJECTINFOCLASS, described in the following section.

JobInformation
Points to a caller-allocated buffer or variable that receives the requested job
information.

JobInformationLength
Specifies the size in bytes of JobInformation, which the caller should set according to
the given JobInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
JobInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

1996 CH07 11/19/99 12:26 PM Page 4

Jobs: ZwSetInformationJobObject 5

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, STATUS_INFO_LENGTH_MISMATCH, or
STATUS_BUFFER_OVERFLOW.

Related Win32 Functions
QueryInformationJobObject.

Remarks
QueryInformationJobObject exposes the full functionality of
ZwQueryInformationJobObject.

The routine ZwQueryInformationJobObject is only present in Windows 2000.

ZwSetInformationJobObject

ZwSetInformationJobObject sets information affecting a job object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetInformationJobObject(

IN HANDLE JobHandle,
IN JOBOBJECTINFOCLASS JobInformationClass,
IN PVOID JobInformation,
IN ULONG JobInformationLength
);

Parameters

JobHandle
A handle to a job object.The handle must grant JOB_OBJECT_SET_ATTRIBUTES access.
Some information classes also require JOB_OBJECT_SET_SECURITY_ATTRIBUTES access.

JobInformationClass
Specifies the type of job information to be set.The permitted values are drawn from
the enumeration JOBOBJECTINFOCLASS, described in the following section.

JobInformation
Points to a caller-allocated buffer or variable that contains the job information to
be set.

JobInformationLength
Specifies the size in bytes of JobInformation, that the caller should set according to the
given JobInformationClass.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

1996 CH07 11/19/99 12:26 PM Page 5

Jobs: ZwSetInformationJobObject6

Related Win32 Functions
SetInformationJobObject.

Remarks
SetInformationJobObject exposes the full functionality of ZwSetInformationJobObject.

The routine ZwSetInformationJobObject is only present in Windows 2000.

JOBOBJECTINFOCLASS
Query Set

typedef enum _JOBOBJECTINFOCLASS {
JobObjectBasicAccountingInformation = 1, // Y N
JobObjectBasicLimitInformation, // Y Y
JobObjectBasicProcessIdList, // Y N
JobObjectBasicUIRestrictions, // Y Y
JobObjectSecurityLimitInformation, // Y Y
JobObjectEndOfJobTimeInformation, // N Y
JobObjectAssociateCompletionPortInformation, // N Y
JobObjectBasicAndIoAccountingInformation, // Y N
JobObjectExtendedLimitInformation // Y Y

} JOBOBJECTINFOCLASS;

JobObjectBasicAccountingInformation
typedef struct _JOBOBJECT_BASIC_ACCOUNTING_INFORMATION {

LARGE_INTEGER TotalUserTime;
LARGE_INTEGER TotalKernelTime;
LARGE_INTEGER ThisPeriodTotalUserTime;
LARGE_INTEGER ThisPeriodTotalKernelTime;
ULONG TotalPageFaultCount;
ULONG TotalProcesses;
ULONG ActiveProcesses;
ULONG TotalTerminatedProcesses;

} JOBOBJECT_BASIC_ACCOUNTING_INFORMATION,
*PJOBOBJECT_BASIC_ACCOUNTING_INFORMATION;

Members

TotalUserTime
The total time spent executing in user mode, measured in units of 100-nanoseconds,
of all the threads that ever belonged to the job.

TotalKernelTime
The total time spent executing in kernel mode, measured in units of 100-nanoseconds,
of all the threads that ever belonged to the job.

ThisPeriodTotalUserTime
The total time spent executing in user mode, measured in units of 100-nanoseconds,
of all the threads that ever belonged to the job since the user mode execution time
limit was last set.

1996 CH07 11/19/99 12:26 PM Page 6

Jobs: JobObjectBasicLimitInformation 7

ThisPeriodTotalKernelTime
The total time spent executing in kernel mode, measured in units of 100-nanoseconds,
of all the threads that ever belonged to the job since the kernel mode execution time
limit was last set.

TotalPageFaultCount
The total number of page faults incurred by all processes that ever belonged to
the job.

TotalProcesses
The total number of processes that ever belonged to the job.

ActiveProcesses
The number of processes that currently belong to the job.

TotalTerminatedProcesses
The total number of processes that have been terminated because a job limit was
exceeded.

Remarks
JOBOBJECT_BASIC_ACCOUNTING_INFORMATION is identical to the structure of the same
name used by the Win32 function, QueryInformationJobObject.

JobObjectBasicLimitInformation
typedef struct _JOBOBJECT_BASIC_LIMIT_INFORMATION {

LARGE_INTEGER PerProcessUserTimeLimit;
LARGE_INTEGER PerJobUserTimeLimit;
ULONG LimitFlags;
ULONG MinimumWorkingSetSize;
ULONG MaximumWorkingSetSize;
ULONG ActiveProcessLimit;
ULONG Affinity;
ULONG PriorityClass;
ULONG SchedulingClass;

} JOBOBJECT_BASIC_LIMIT_INFORMATION, *PJOBOBJECT_BASIC_LIMIT_INFORMATION;

Members

PerProcessUserTimeLimit
The limit on the time spent executing in user mode, measured in units of 100-nanosec-
onds, of all the threads in any one process belonging to the job.When setting limits, this
member is ignored unless LimitFlags specifies JOB_OBJECT_LIMIT_PROCESS_TIME.

PerJobUserTimeLimit
The limit on the time spent executing in user mode, measured in units of 100-
nanoseconds, of the job.When setting limits, this member is ignored unless LimitFlags
specifies JOB_OBJECT_LIMIT_JOB_TIME.When querying limits, the value is the total time
allowed to all threads that ever belonged to the job; subtracting TotalUserTime (from

1996 CH07 11/19/99 12:26 PM Page 7

Jobs: JobObjectBasicLimitInformation8

JOBOBJECT_BASIC_ACCOUNTING_INFORMATION) gives the remaining time.When setting
limits the value is the time remaining until the job user mode execution time limit is
reached.

LimitFlags
Specifies which limits are in force.When setting limits, if a limit is not specified as
being in force, the value of its member in the limit structure is ignored. Some limit
flags are only valid when specified in conjunction with a
JOBOBJECT_EXTENDED_LIMIT_INFORMATION structure.

JOB_OBJECT_LIMIT_WORKINGSET 0x0001
JOB_OBJECT_LIMIT_PROCESS_TIME 0x0002
JOB_OBJECT_LIMIT_JOB_TIME 0x0004
JOB_OBJECT_LIMIT_ACTIVE_PROCESS 0x0008
JOB_OBJECT_LIMIT_AFFINITY 0x0010
JOB_OBJECT_LIMIT_PRIORITY_CLASS 0x0020
JOB_OBJECT_LIMIT_PRESERVE_JOB_TIME 0x0040
JOB_OBJECT_LIMIT_SCHEDULING_CLASS 0x0080
JOB_OBJECT_LIMIT_PROCESS_MEMORY 0x0100
JOB_OBJECT_LIMIT_JOB_MEMORY 0x0200
JOB_OBJECT_LIMIT_DIE_ON_UNHANDLED_EXCEPTION 0x0400
JOB_OBJECT_BREAKAWAY_OK 0x0800
JOB_OBJECT_SILENT_BREAKAWAY 0x1000

MinimumWorkingSetSize
The minimum working set size, in bytes, for all processes belonging to the job.When
setting limits, this member is ignored unless LimitFlags specifies
JOB_OBJECT_LIMIT_WORKINGSET.

MaximumWorkingSetSize
The maximum working set size, in bytes, for all processes belonging to the job.When
setting limits, this member is ignored unless LimitFlags specifies
JOB_OBJECT_LIMIT_WORKINGSET.

Affinity
The processor affinity for all processes belonging to the job.When setting limits, this
member is ignored unless LimitFlags specifies JOB_OBJECT_LIMIT_AFFINITY.

PriorityClass
The priority class for all processes belonging to the job.When setting limits, this mem-
ber is ignored unless LimitFlags specifies JOB_OBJECT_LIMIT_PRIORITY_CLASS.The
defined priority classes include:

PC_IDLE 1
PC_NORMAL 2
PC_HIGH 3
PC_REALTIME 4
PC_BELOW_NORMAL 5
PC_ABOVE_NORMAL 6

SeIncreaseBasePriorityPrivilege is required to set PriorityClass to PC_REALTIME.

1996 CH07 11/19/99 12:26 PM Page 8

Jobs: JobObjectBasicProcessIdList 9

SchedulingClass
The scheduling class for all processes belonging to the job.When setting limits, this
member is ignored unless LimitFlags specifies JOB_OBJECT_LIMIT_SCHEDULING_CLASS.
The scheduling class affects the thread scheduling quantum: the higher the class the
longer the quantum.The permitted values range from zero to nine;
SeIncreaseBasePriorityPrivilege is required to set SchedulingClass to values greater
than five.

Remarks
JOBOBJECT_BASIC_LIMIT_INFORMATION is identical to the structure of the same name
used by the Win32 functions QueryInformationJobObject and
SetInformationJobObject. However the PriorityClass field is encoded differently: the
Win32 functions use the XXX_PRIORITY_CLASS values defined in winbase.h.

Although JOB_OBJECT_LIMIT_DIE_ON_UNHANDLED_EXCEPTION, JOB_OBJECT_BREAKAWAY_OK
and JOB_OBJECT_SILENT_BREAKAWAY are not associated with any particular member of
JOBOBJECT_EXTENDED_LIMIT_INFORMATION, they are only valid when specified with the
information class JobObjectExtendedLimitInformation.

The breakaway flags JOB_OBJECT_BREAKAWAY_OK and JOB_OBJECT_SILENT_BREAKAWAY
determine whether new processes created by members of the job can be disassociated
from the job. JOB_OBJECT_SILENT_BREAKAWAY means that the disassociation is automatic
whilst JOB_OBJECT_BREAKAWAY_OK means that the creator of a new process can request
that it be disassociated when calling ZwCreateProcess.

JobObjectBasicProcessIdList
typedef struct _JOBOBJECT_BASIC_PROCESS_ID_LIST {

ULONG NumberOfAssignedProcesses;
ULONG NumberOfProcessIdsInList;
ULONG_PTR ProcessIdList[1];

} JOBOBJECT_BASIC_PROCESS_ID_LIST, *PJOBOBJECT_BASIC_PROCESS_ID_LIST;

Members

NumberOfAssignedProcesses
The number of active processes belonging to the job.

NumberOfProcessIdsInList
The number of process identifiers in the ProcessIdList array. If
ZwQueryInformationJobObject fails with STATUS_BUFFER_OVERFLOW, ProcessIdList con-
tains a subset of the process identifiers belonging to the job.

ProcessIdList
An array of the process identifiers of the processes belonging to the job.

Remarks
JOBOBJECT_BASIC_PROCESS_ID_LIST is identical to the structure of the same name used
by the Win32 function QueryInformationJobObject.

1996 CH07 11/19/99 12:26 PM Page 9

Jobs: JobObjectBasicUIRestrictions10

JobObjectBasicUIRestrictions
typedef struct _JOBOBJECT_BASIC_UI_RESTRICTIONS {

ULONG UIRestrictionsClass;
} JOBOBJECT_BASIC_UI_RESTRICTIONS, *PJOBOBJECT_BASIC_UI_RESTRICTIONS;

Members

UIRestrictionsClass
Specifies restrictions on the user interface behavior of processes belonging to the job.
The following restrictions are defined:

JOB_OBJECT_UILIMIT_HANDLES 0x0001
JOB_OBJECT_UILIMIT_READCLIPBOARD 0x0002
JOB_OBJECT_UILIMIT_WRITECLIPBOARD 0x0004
JOB_OBJECT_UILIMIT_SYSTEMPARAMETERS 0x0008
JOB_OBJECT_UILIMIT_DISPLAYSETTINGS 0x0010
JOB_OBJECT_UILIMIT_GLOBALATOMS 0x0020
JOB_OBJECT_UILIMIT_DESKTOP 0x0040
JOB_OBJECT_UILIMIT_EXITWINDOWS 0x0080

Remarks
JOBOBJECT_BASIC_UI_RESTRICTIONS is identical to the structure of the same name used
by the Win32 functions QueryInformationJobObject and SetInformationJobObject.

JobObjectSecurityLimitInformation
typedef struct _JOBOBJECT_SECURITY_LIMIT_INFORMATION {

ULONG SecurityLimitFlags;
HANDLE JobToken;
PTOKEN_GROUPS SidsToDisable;
PTOKEN_PRIVILEGES PrivilegesToDelete;
PTOKEN_GROUPS RestrictedSids;

} JOBOBJECT_SECURITY_LIMIT_INFORMATION,
*PJOBOBJECT_SECURITY_LIMIT_INFORMATION;

Members

SecurityLimitFlags
Specifies restrictions on the tokens of processes belonging to the job.The following
restrictions are defined:

JOB_OBJECT_SECURITY_NO_ADMIN 0x0001
JOB_OBJECT_SECURITY_RESTRICTED_TOKEN 0x0002
JOB_OBJECT_SECURITY_ONLY_TOKEN 0x0004
JOB_OBJECT_SECURITY_FILTER_TOKENS 0x0008

JobToken
A handle to a token object.The handle must grant TOKEN_ASSIGN_PRIMARY,
TOKEN_DUPLICATE, and TOKEN_IMPERSONATE access. SeAssignPrimaryTokenPrivilege is
required unless the token is a filtered copy of the token of the current process.When
setting limits, this member is ignored unless SecurityLimitFlags specifies
JOB_OBJECT_SECURITY_ONLY_TOKEN.

1996 CH07 11/19/99 12:26 PM Page 10

Jobs: JobObjectEndOfJobTimeInformation 11

SidsToDisable
A pointer to a TOKEN_GROUPS structure specifying the groups to be converted to deny-
only groups in the tokens of processes added to the job.When setting limits, this
member is ignored unless SecurityLimitFlags specifies
JOB_OBJECT_SECURITY_FILTER_TOKENS.

PrivilegesToDelete
A pointer to a TOKEN_PRIVILEGES structure specifying the privileges to be deleted from
the tokens of processes added to the job.When setting limits, this member is ignored
unless SecurityLimitFlags specifies JOB_OBJECT_SECURITY_FILTER_TOKENS.

RestrictedSids
A pointer to a TOKEN_GROUPS structure that specifies the restricted groups to be added
to the tokens of processes added to the job.When setting limits, this member is
ignored unless SecurityLimitFlags specifies JOB_OBJECT_SECURITY_FILTER_TOKENS.

Remarks
JOBOBJECT_SECURITY_LIMIT_INFORMATION is identical to the structure of the same name
used by the Win32 functions QueryInformationJobObject and SetInformationJobObject.

When querying JobObjectSecurityLimitInformation, enough space must be allocated
to hold the JOBOBJECT_SECURITY_LIMIT_INFORMATION structure and the referenced privi-
leges and groups.The ReturnLength information only indicates that the size of the
JOBOBJECT_SECURITY_LIMIT_INFORMATION structure has been copied to the
JobInformation buffer—this is a minor bug. If a job token is set, its value cannot be
retrieved by querying this information class.

JobObjectEndOfJobTimeInformation
typedef struct _JOBOBJECT_END_OF_JOB_TIME_INFORMATION {

ULONG EndOfJobTimeAction;
} JOBOBJECT_END_OF_JOB_TIME_INFORMATION,

*PJOBOBJECT_END_OF_JOB_TIME_INFORMATION;

Members

EndOfJobTimeAction
Specifies the action to be taken when the PerJobUserTimeLimit is reached.The follow-
ing actions are defined:

JOB_OBJECT_TERMINATE_AT_END_OF_JOB 0
JOB_OBJECT_POST_AT_END_OF_JOB 1

Remarks
JOBOBJECT_END_OF_JOB_TIME_INFORMATION is identical to the structure of the same name
used by the Win32 functions QueryInformationJobObject and SetInformationJobObject.

1996 CH07 11/19/99 12:26 PM Page 11

Jobs: JobObjectAssociateCompletionPortInformation12

JobObjectAssociateCompletionPortInformation
typedef struct _JOBOBJECT_ASSOCIATE_COMPLETION_PORT {

PVOID CompletionKey;
HANDLE CompletionPort;

} JOBOBJECT_ASSOCIATE_COMPLETION_PORT, *PJOBOBJECT_ASSOCIATE_COMPLETION_PORT;

Members

CompletionKey
The value to be used as the CompletionKey argument to ZwSetIoCompletion when
messages are sent on behalf of the job.

CompletionPort
The handle to be used as the IoCompletionHandle argument to ZwSetIoCompletion
when messages are sent on behalf of the job.The handle must grant
IO_COMPLETION_MODIFY_STATE access.

Remarks
JOBOBJECT_ASSOCIATE_COMPLETION_PORT is identical to the structure of the same name
used by the Win32 functions QueryInformationJobObject and SetInformationJobObject.

The job sends messages to the completion port when certain events occur.After call-
ing ZwRemoveIoCompletion to retrieve a message, the type of event is available in the
Information member of the IO_STATUS_BLOCK pointed to by the IoStatusBlock argu-
ment.The following types of events are defined:

JOB_OBJECT_MSG_END_OF_JOB_TIME 1
JOB_OBJECT_MSG_END_OF_PROCESS_TIME 2
JOB_OBJECT_MSG_ACTIVE_PROCESS_LIMIT 3
JOB_OBJECT_MSG_ACTIVE_PROCESS_ZERO 4
JOB_OBJECT_MSG_NEW_PROCESS 6
JOB_OBJECT_MSG_EXIT_PROCESS 7
JOB_OBJECT_MSG_ABNORMAL_EXIT_PROCESS 8
JOB_OBJECT_MSG_PROCESS_MEMORY_LIMIT 9
JOB_OBJECT_MSG_JOB_MEMORY_LIMIT 10

Depending upon the event type, the variable pointed to by the CompletionValue argu-
ment to ZwRemoveIoCompletion may contain the process identifier of the process within
the job that caused the event.

JobObjectBasicAndIoAccountingInformation
typedef struct JOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATION {

JOBOBJECT_BASIC_ACCOUNTING_INFORMATION BasicInfo;
IO_COUNTERS IoInfo;

} JOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATION,
*PJOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATION;

1996 CH07 11/19/99 12:26 PM Page 12

Jobs: JobObjectExtendedLimitInformation 13

Members

BasicInfo
A JOBOBJECT_BASIC_ACCOUNTING_INFORMATION structure that contains the basic account-
ing information for the job.

IoInfo
An IO_COUNTERS structure that contains the I/O accounting information for the job

Remarks
JOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATION is identical to the structure of the
same name used by the Win32 function QueryInformationJobObject.

JobObjectExtendedLimitInformation
typedef struct _JOBOBJECT_EXTENDED_LIMIT_INFORMATION {

JOBOBJECT_BASIC_LIMIT_INFORMATION BasicLimitInformation;
IO_COUNTERS IoInfo;
ULONG ProcessMemoryLimit;
ULONG JobMemoryLimit;
ULONG PeakProcessMemoryUsed;
ULONG PeakJobMemoryUsed;

} JOBOBJECT_EXTENDED_LIMIT_INFORMATION,
*PJOBOBJECT_EXTENDED_LIMIT_INFORMATION;

Members

BasicLimitInformation
A JOBOBJECT_BASIC_LIMIT_INFORMATION structure that specifies the basic limits for
the job.

IoInfo
An IO_COUNTERS structure. Not currently used.

ProcessMemoryLimit
The maximum amount of committed virtual memory, in bytes, for any processes
belonging to the job.When setting limits, this member is ignored unless
BasicLimitInformation.LimitFlags specifies JOB_OBJECT_LIMIT_PROCESS_MEMORY.

JobMemoryLimit
The maximum amount of committed virtual memory, in bytes, for all processes
belonging to the job.When setting limits, this member is ignored unless
BasicLimitInformation.LimitFlags specifies JOB_OBJECT_LIMIT_JOB_MEMORY.

PeakProcessMemoryUsed
The peak amount of virtual memory committed by any process that ever belonged to
the job.This member cannot be set.

1996 CH07 11/19/99 12:26 PM Page 13

Jobs: JobObjectExtendedLimitInformation14

PeakJobMemoryUsed
The peak amount of virtual memory committed by all process belonging to the job.
This member cannot be set.

Remarks
JOBOBJECT_EXTENDED_LIMIT_INFORMATION is identical to the structure of the same name
used by the Win32 functions QueryInformationJobObject and SetInformationJobObject.

1996 CH07 11/19/99 12:26 PM Page 14

8
Tokens

The system services described in this chapter create and manipulate token objects.
Token objects are objects that encapsulate the privileges and access rights of an agent
(a thread or process).

ZwCreateToken

ZwCreateToken creates a token object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateToken(

OUT PHANDLE TokenHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN TOKEN_TYPE Type,
IN PLUID AuthenticationId,
IN PLARGE_INTEGER ExpirationTime,
IN PTOKEN_USER User,
IN PTOKEN_GROUPS Groups,
IN PTOKEN_PRIVILEGES Privileges,
IN PTOKEN_OWNER Owner,
IN PTOKEN_PRIMARY_GROUP PrimaryGroup,
IN PTOKEN_DEFAULT_DACL DefaultDacl,
IN PTOKEN_SOURCE Source
);

Parameters

TokenHandle
Points to a variable that will receive the token object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the token object.This parameter
can be zero, or any combination of the following flags:

TOKEN_ASSIGN_PRIMARY Can be assigned as primary token
TOKEN_DUPLICATE Can be duplicated
TOKEN_IMPERSONATE Can be assigned as impersonation token
TOKEN_QUERY Can be queried

1996 Ch08 11.24.99 09:55 Page 189

Tokens: ZwCreateToken190

TOKEN_QUERY_SOURCE Can be queried for source
TOKEN_ADJUST_PRIVILEGES Token privileges can be adjusted
TOKEN_ADJUST_GROUPS Token groups can be adjusted
TOKEN_ADJUST_DEFAULT Token default ACL and owner can be adjusted
TOKEN_ADJUST_SESSIONID Token session id can be adjusted
TOKEN_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for a token object.

TokenType
Specifies the type of token object to be created.The permitted values are drawn from
the enumeration TOKEN_TYPE:

typedef enum _TOKEN_TYPE {
TokenPrimary = 1,
TokenImpersonation

} TOKEN_TYPE, *PTOKEN_TYPE;

AuthenticationId
Points to a structure that specifies the value that is used to correlate the token with
other authentication information.

ExpirationTime
Points to a structure that specifies the time at which the token will expire in the stan-
dard time format (that is, the number of 100-nanosecond intervals since January 1,
1601).An expiration time value of –1 indicates that the token does not expire.

User
Points to a structure that specifies which user the token will represent.

Groups
Points to a structure that specifies to which groups the user represented by the token
will belong.

Privileges
Points to a structure that specifies which privileges are granted to the user that the
token will represent.

Owner
Points to a structure that specifies the default owner for objects created by the user
which the token will represent.

PrimaryGroup
Points to a structure that specifies the default group for objects created by the user that
the token will represent.

1996 Ch08 11.24.99 09:55 Page 190

Tokens: ZwOpenProcessToken 191

DefaultDacl
Points to a structure that specifies the default ACL for objects created by the user that
the token will represent.

Source
Points to a structure that identifies the creator of the token.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_OWNER,
STATUS_BAD_IMPERSONATION_LEVEL, STATUS_NO_SUCH_LOGON_SESSION, or
STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions
None.

Remarks
SeCreateTokenPrivilege is required to create a token.

The AuthenticationId parameter should correspond to a Local Security Authority
(LSA) “Logon Session” identifier.This provides the link to credential information. If
the credentials for a user are not available or not required (as when the token will only
be used to access resources local to the system), AuthenticationId could be specified
as SYSTEM_LUID (defined in winnt.h) or copied from the process’s current token. In
Windows 2000, the AuthenticationId ANONYMOUS_LOGON_LUID could also be used.

TOKEN_ADJUST_SESSIONID is only valid in Windows 2000.

Example 8.1 creates a token that is used as an argument to CreateProcessAsUser.

ZwOpenProcessToken

ZwOpenProcessToken opens the token of a process.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenProcessToken(

IN HANDLE ProcessHandle,
IN ACCESS_MASK DesiredAccess,
OUT PHANDLE TokenHandle
);

Parameters

ProcessHandle
A handle to a process object.The handle must grant PROCESS_QUERY_INFORMATION
access.

1996 Ch08 11.24.99 09:55 Page 191

Tokens: ZwOpenProcessToken192

DesiredAccess
Specifies the type of access that the caller requires to the token object.This parameter
can be zero, or any combination of the following flags:

TOKEN_ASSIGN_PRIMARY Can be assigned as primary token
TOKEN_DUPLICATE Can be duplicated
TOKEN_IMPERSONATE Can be assigned as impersonation token
TOKEN_QUERY Can be queried
TOKEN_QUERY_SOURCE Can be queried for source
TOKEN_ADJUST_PRIVILEGES Token privileges can be adjusted
TOKEN_ADJUST_GROUPS Token groups can be adjusted
TOKEN_ADJUST_DEFAULT Token default ACL and owner can be adjusted
TOKEN_ADJUST_SESSIONID Token session id can be adjusted
TOKEN_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

TokenHandle
Points to a variable that will receive the token object handle if the call is successful.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
OpenProcessToken.

Remarks
OpenProcessToken exposes the full functionality of ZwOpenProcessToken.

TOKEN_ADJUST_SESSIONID is only valid in Windows 2000.

ZwOpenThreadToken

ZwOpenThreadToken opens the token of a thread.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenThreadToken(

IN HANDLE ThreadHandle,
IN ACCESS_MASK DesiredAccess,
IN BOOLEAN OpenAsSelf,
OUT PHANDLE TokenHandle
);

Parameters

ThreadHandle
A handle to a thread.The handle must grant THREAD_QUERY_INFORMATION access.

1996 Ch08 11.24.99 09:55 Page 192

Tokens: ZwDuplicateToken 193

DesiredAccess
Specifies the type of access that the caller requires to the token object.This parameter
can be zero, or any combination of the following flags:

TOKEN_ASSIGN_PRIMARY Can be assigned as primary token
TOKEN_DUPLICATE Can be duplicated
TOKEN_IMPERSONATE Can be assigned as impersonation token
TOKEN_QUERY Can be queried
TOKEN_QUERY_SOURCE Can be queried for source
TOKEN_ADJUST_PRIVILEGES Token privileges can be adjusted
TOKEN_ADJUST_GROUPS Token groups can be adjusted
TOKEN_ADJUST_DEFAULT Token default ACL and owner can be adjusted
TOKEN_ADJUST_SESSIONID Token session id can be adjusted
TOKEN_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

OpenAsSelf
A boolean specifying whether the security context of the process should be used to
check the access to the token object. If OpenAsSelf is false, the security context of the
thread is used, which may be an impersonation context.

TokenHandle
Points to a variable that will receive the token object handle if the call is successful.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, or STATUS_NO_TOKEN.

Related Win32 Functions
OpenThreadToken.

Remarks
OpenThreadToken exposes the full functionality of ZwOpenThreadToken.

TOKEN_ADJUST_SESSIONID is only valid in Windows 2000.

ZwDuplicateToken

ZwDuplicateToken makes a duplicate copy of a token.
NTSYSAPI
NTSTATUS
NTAPI
ZwDuplicateToken(

IN HANDLE ExistingTokenHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN BOOLEAN EffectiveOnly,
IN TOKEN_TYPE TokenType,
OUT PHANDLE NewTokenHandle
);

1996 Ch08 11.24.99 09:55 Page 193

Tokens: ZwDuplicateToken194

Parameters

ExistingTokenHandle
A handle to a token object.The handle must grant TOKEN_DUPLICATE access.

DesiredAccess
Specifies the type of access that the caller requires to the token object.This parameter
can be zero, or any combination of the following flags:

TOKEN_ASSIGN_PRIMARY Can be assigned as primary token
TOKEN_DUPLICATE Can be duplicated
TOKEN_IMPERSONATE Can be assigned as impersonation token
TOKEN_QUERY Can be queried
TOKEN_QUERY_SOURCE Can be queried for source
TOKEN_ADJUST_PRIVILEGES Token privileges can be adjusted
TOKEN_ADJUST_GROUPS Token groups can be adjusted
TOKEN_ADJUST_DEFAULT Token default ACL and owner can be adjusted
TOKEN_ADJUST_SESSIONID Token session id can be adjusted
TOKEN_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for a token object.

EffectiveOnly
A boolean specifying whether the privileges and groups present, but disabled, in the
existing token may be enabled in the new token.

TokenType
Specifies the type of token object to be created.The permitted values are drawn from
the enumeration TOKEN_TYPE:

typedef enum _TOKEN_TYPE {
TokenPrimary = 1,
TokenImpersonation

} TOKEN_TYPE, *PTOKEN_TYPE;

NewTokenHandle
Points to a variable that will receive the token object handle if the call is successful.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
DuplicateToken, DuplicateTokenEx.

Remarks
DuplicateTokenEx exposes most of the functionality of ZwDuplicateToken.

TOKEN_ADJUST_SESSIONID is only valid in Windows 2000.

1996 Ch08 11.24.99 09:55 Page 194

Tokens: ZwFilterToken 195

ZwFilterToken

ZwFilterToken creates a child of an existing token and applies restrictions to the child
token.
NTSYSAPI
NTSTATUS
NTAPI
ZwFilterToken(

IN HANDLE ExistingTokenHandle,
IN ULONG Flags,
IN PTOKEN_GROUPS SidsToDisable,
IN PTOKEN_PRIVILEGES PrivilegesToDelete,
IN PTOKEN_GROUPS SidsToRestricted,
OUT PHANDLE NewTokenHandle
);

Parameters

ExistingTokenHandle
A handle to a token object.The handle must grant TOKEN_DUPLICATE access.

Flags
A bit array of flags that affect the filtering of the token.The following value is defined:

DELETE_MAX_PRIVILEGES 1 // Delete all privileges except
// SeChangeNotifyPrivilege

SidsToDisable
Points to a structure that specifies which SIDs are to be disabled in the new token
(by adding the attribute SE_GROUP_USE_FOR_DENY_ONLY to the SID). SIDs present in
SidsToDisable that are not present in the existing token are ignored, as are the
Attributes members of the array SidsToDisable->Groups.

PrivilegesToDelete
Points to a structure that specifies which privileges present in the existing token are
not to be copied to the new token. Privileges present in PrivilegesToDelete that are
not present in the existing token are ignored, as are the Attributes members of the
array PrivilegesToDelete->Privileges. If Flags specifies DELETE_MAX_PRIVILEGES
and SeChangeNotifyPrivilege is present in PrivilegesToDelete, it is deleted along
with all other privileges.

SidsToRestrict
Points to a structure that specifies which SIDs are to be added to the restricted SIDs
of the token. SIDs present in SidsToRestrict that are already present in the
restricted SIDs of the existing token are ignored.The Attributes members of
SidsToRestrict->Groups must be zero.

NewTokenHandle
Points to a variable that will receive the token object handle if the call is successful.

1996 Ch08 11.24.99 09:55 Page 195

Tokens: ZwFilterToken196

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
CreateRestrictedToken.

Remarks
CreateRestrictedToken exposes the full functionality of ZwFilterToken.

The routine ZwFilterToken is only present in Windows 2000.

ZwAdjustPrivilegesToken

ZwAdjustPrivilegesToken adjusts the attributes of the privileges in a token.
NTSYSAPI
NTSTATUS
NTAPI
ZwAdjustPrivilegesToken(

IN HANDLE TokenHandle,
IN BOOLEAN DisableAllPrivileges,
IN PTOKEN_PRIVILEGES NewState,
IN ULONG BufferLength,
OUT PTOKEN_PRIVILEGES PreviousState OPTIONAL,
OUT PULONG ReturnLength
);

Parameters

TokenHandle
A handle to a token object. The handle must grant TOKEN_ADJUST_PRIVILEGES access.

DisableAllPrivileges
A boolean specifying whether all of the token’s privileges should be disabled. If
DisableAllPrivileges is true, the NewState parameter is ignored.

NewState
Points to a structure that specifies the new state of a set of privileges present in the
token.

BufferLength
Specifies the size in bytes of the structure pointed to by PreviousState.

PreviousState
Points to a caller-allocated buffer or variable that receives the previous state of the
privileges. If PreviousState is not a null pointer, TokenHandle must also grant
TOKEN_QUERY access.

1996 Ch08 11.24.99 09:55 Page 196

Tokens: ZwAdjustGroupsToken 197

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
PreviousState if the call was successful. If PreviousState is not a null pointer,
ReturnLength must be a valid pointer.

Return Value
Returns STATUS_SUCCESS, STATUS_NOT_ALL_ASSIGNED or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, or STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions
AdjustTokenPrivileges.

Remarks
AdjustTokenPrivileges exposes the full functionality of ZwAdjustTokenPrivileges.

ZwAdjustGroupsToken

ZwAdjustGroupsToken adjusts the attributes of the groups in a token.
NTSYSAPI
NTSTATUS
NTAPI
ZwAdjustGroupsToken(

IN HANDLE TokenHandle,
IN BOOLEAN ResetToDefault,
IN PTOKEN_GROUPS NewState,
IN ULONG BufferLength,
OUT PTOKEN_GROUPS PreviousState OPTIONAL,
OUT PULONG ReturnLength
);

Parameters

TokenHandle
A handle to a token object.The handle must grant TOKEN_ADJUST_GROUPS access.

ResetToDefault
A boolean specifying whether all of the token’s groups should be reset to their default
state. If ResetToDefault is true, the NewState parameter is ignored.

NewState
Points to a structure that specifies the new state of a set of groups present in the token.

BufferLength
Specifies the size in bytes of the structure pointed to by PreviousState.

PreviousState
Points to a caller-allocated buffer or variable that receives the previous state of the
groups. If PreviousState is not a null pointer, TokenHandle must also grant
TOKEN_QUERY access.

1996 Ch08 11.24.99 09:55 Page 197

Tokens: ZwAdjustGroupsToken198

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
PreviousState if the call was successful. If PreviousState is not a null pointer,
ReturnLength must be a valid pointer.

Return Value
Returns STATUS_SUCCESS, STATUS_NOT_ALL_ASSIGNED or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, or STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions
AdjustTokenGroups.

Remarks
AdjustTokenGroups exposes the full functionality of ZwAdjustTokenGroups.

ZwQueryInformationToken

ZwQueryInformationToken retrieves information about a token object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryInformationToken(

IN HANDLE TokenHandle,
IN TOKEN_INFORMATION_CLASS TokenInformationClass,
OUT PVOID TokenInformation,
IN ULONG TokenInformationLength,
OUT PULONG ReturnLength
);

Parameters

TokenHandle
A handle to a token object.The handle must grant TOKEN_QUERY access for most infor-
mation classes.To query the token source TOKEN_QUERY_SOURCE access must be granted.

TokenInformationClass
Specifies the type of token information to be queried.The permitted values are drawn
from the enumeration TOKEN_INFORMATION_CLASS, described in the following section.

TokenInformation
Points to a caller-allocated buffer or variable that receives the requested token
information.

TokenInformationLength
Specifies the size in bytes of TokenInformation, which the caller should set according
to the given TokenInformationClass.

1996 Ch08 11.24.99 09:55 Page 198

Tokens: ZwSetInformationToken 199

ReturnLength
Points to a variable that receives the number of bytes actually returned to
TokenInformation; if TokenInformationLength is too small to contain the available
data, ReturnLength points to the number of bytes required for the available data.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions
GetTokenInformation.

Remarks
GetTokenInformation exposes the full functionality of ZwQueryInformationToken.

ZwSetInformationToken

ZwSetInformationToken sets information affecting a token object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetInformationToken(

IN HANDLE TokenHandle,
IN TOKEN_INFORMATION_CLASS TokenInformationClass,
IN PVOID TokenInformation,
IN ULONG TokenInformationLength
);

Parameters

TokenHandle
A handle to a token object.The handle must grant TOKEN_ADJUST_DEFAULT access.
Some information classes also require TOKEN_ADJUST_SESSIONID access.

TokenInformationClass
Specifies the type of token information to be set.The permitted values are a subset of
the enumeration TOKEN_INFORMATION_CLASS, described in the following section.

TokenInformation
Points to a caller-allocated buffer or variable that contains the token information to
be set.

TokenInformationLength
Specifies the size in bytes of TokenInformation, which the caller should set according
to the given TokenInformationClass.

1996 Ch08 11.24.99 09:55 Page 199

Tokens: ZwSetInformationToken200

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS,
STATUS_INFO_LENGTH_MISMATCH, STATUS_INVALID_OWNER, or
STATUS_ALLOTTED_SPACE_EXCEEDED.

Related Win32 Functions
SetTokenInformation.

Remarks
SetTokenInformation exposes the full functionality of ZwSetInformationToken.

TOKEN_INFORMATION_CLASS
Query Set

typedef enum _TOKEN_INFORMATION_CLASS {
TokenUser = 1, // 1 Y N
TokenGroups, // 2 Y N
TokenPrivileges, // 3 Y N
TokenOwner, // 4 Y Y
TokenPrimaryGroup, // 5 Y Y
TokenDefaultDacl, // 6 Y Y
TokenSource, // 7 Y N
TokenType, // 8 Y N
TokenImpersonationLevel, // 9 Y N
TokenStatistics, // 10 Y N
TokenRestrictedSids, // 11 Y N
TokenSessionId // 12 Y Y

} TOKEN_INFORMATION_CLASS;

TokenUser
typedef struct _TOKEN_USER { // Information Class 1

SID_AND_ATTRIBUTES User;
} TOKEN_USER, *PTOKEN_USER;

Members

User
The SID of the user. No attributes are defined.

Remarks
None.

TokenGroups and TokenRestrictedSids
typedef struct _TOKEN_GROUPS { // Information Classes 2 and 11

ULONG GroupCount;
SID_AND_ATTRIBUTES Groups[ANYSIZE_ARRAY];

} TOKEN_GROUPS, *PTOKEN_GROUPS;

1996 Ch08 11.24.99 09:55 Page 200

Tokens: TokenOwner 201

Members

GroupCount
The numbers of groups in the array Groups

Groups
An array of SIDs of groups and their associated attributes.The following attributes are
defined:

SE_GROUP_MANDATORY 0x00000001
SE_GROUP_ENABLED_BY_DEFAULT 0x00000002
SE_GROUP_ENABLED 0x00000004
SE_GROUP_OWNER 0x00000008
SE_GROUP_USE_FOR_DENY_ONLY 0x00000010
SE_GROUP_RESOURCE 0x20000000
SE_GROUP_LOGON_ID 0xC0000000

Remarks
TokenRestrictedSids is only valid in Windows 2000.

TokenPrivileges
typedef struct _TOKEN_PRIVILEGES { // Information Class 3

ULONG PrivilegeCount;
LUID_AND_ATTRIBUTES Privileges[ANYSIZE_ARRAY];

} TOKEN_PRIVILEGES, *PTOKEN_PRIVILEGES;

Members

PrivilegeCount
The numbers of privileges in the array Privileges.

Privileges
An array of LUIDs identifying privileges and their associated attributes.The following
attributes are defined:

SE_PRIVILEGE_ENABLED_BY_DEFAULT 0x00000001
SE_PRIVILEGE_ENABLED 0x00000002

Remarks
None.

TokenOwner
typedef struct _TOKEN_OWNER { // Information Class 4

PSID Owner;
} TOKEN_OWNER, *PTOKEN_OWNER;

1996 Ch08 11.24.99 09:55 Page 201

Tokens: TokenOwner202

Members

Owner
The SID that will be recorded as the owner of any objects created by a process using
this access token.

Remarks
None.

TokenPrimaryGroup
typedef struct _TOKEN_PRIMARY_GROUP { // Information Class 5

PSID PrimaryGroup;
} TOKEN_PRIMARY_GROUP, *PTOKEN_PRIMARY_GROUP;

Members

PrimaryGroup
The SID that will be recorded as the primary group of any objects created by a
process using this access token.

Remarks
None.

TokenDefaultDacl
typedef struct _TOKEN_DEFAULT_DACL { // Information Class 6

PACL DefaultDacl;
} TOKEN_DEFAULT_DACL, *PTOKEN_DEFAULT_DACL;

Members

DefaultDacl
The Discretionary ACL that will be assigned to any objects created by a process using
this access token, unless an explicit ACL is specified.

Remarks
None.

TokenSource
typedef struct _TOKEN_SOURCE { // Information Class 7

CHAR SourceName[8];
LUID SourceIdentifier;

} TOKEN_SOURCE, *PTOKEN_SOURCE;

1996 Ch08 11.24.99 09:55 Page 202

Tokens: TokenStatistics 203

Members

SourceName
A textual identifier of the creator of the token.

SourceIdentifier
A numeric identifier of the creator of the token.

Remarks
None.

TokenType
typedef enum _TOKEN_TYPE { // Information Class 8

TokenPrimary = 1,
TokenImpersonation

} TOKEN_TYPE, *PTOKEN_TYPE;

TokenImpersonationLevel
typedef enum _SECURITY_IMPERSONATION_LEVEL { // Information Class 9

SecurityAnonymous,
SecurityIdentification,
SecurityImpersonation,
SecurityDelegation

} SECURITY_IMPERSONATION_LEVEL, * PSECURITY_IMPERSONATION_LEVEL;

TokenStatistics
typedef struct _TOKEN_STATISTICS { // Information Class 10

LUID TokenId;
LUID AuthenticationId;
LARGE_INTEGER ExpirationTime;
TOKEN_TYPE TokenType;
SECURITY_IMPERSONATION_LEVEL ImpersonationLevel;
ULONG DynamicCharged;
ULONG DynamicAvailable;
ULONG GroupCount;
ULONG PrivilegeCount;
LUID ModifiedId;

} TOKEN_STATISTICS, *PTOKEN_STATISTICS;

Members

TokenId
A locally unique identifier (LUID) that identifies the instance of the token object.

AuthenticationId
A LUID assigned to the session the token represents.There can be many tokens repre-
senting a single logon session.

1996 Ch08 11.24.99 09:55 Page 203

Tokens: TokenStatistics 204

ExpirationTime
The time at which the token expires in the standard time format (that is, the number
of 100-nanosecond intervals since January 1, 1601).An expiration time value of –1
indicates that the token does not expire.

TokenType
Specifies the type of the token (primary or impersonation).

ImpersonationLevel
Specifies the impersonation level of the token.This member is valid only if the
TokenType is TokenImpersonation.

DynamicCharged
The size, in bytes, of memory allocated for storing default protection and a primary
group identifier.

DynamicAvailable
The size, in bytes, of memory allocated for storing default protection and a primary
group identifier that has not been used.

GroupCount
The number of group SIDs included in the token.

PrivilegeCount
The number of privileges included in the token.

ModifiedId
A LUID that changes each time the token is modified.An application can use this
value as a test of whether a security context has changed since it was last used.

Remarks
None.

TokenSessionId
ULONG SessionId; // Information Class 12

A numeric identifier for a session.

TokenSessionId is only valid in Windows 2000.

Although the session identifier can be set in any version of Windows 2000, it is only
meaningful to Windows Terminal Server.

1996 Ch08 11.24.99 09:55 Page 204

Tokens: Example 8.1 205

Example 8.1: Creating a command window for the
SYSTEM user
#include “ntdll.h”

PVOID GetFromToken(HANDLE hToken, TOKEN_INFORMATION_CLASS tic)
{

DWORD n;

BOOL rv = GetTokenInformation(hToken, tic, 0, 0, &n);
if (rv == FALSE && GetLastError() != ERROR_INSUFFICIENT_BUFFER) return 0;

PBYTE p = new BYTE[n];

return GetTokenInformation(hToken, tic, p, n, &n) == FALSE ? 0 : p;
}

HANDLE SystemToken()
{

EnablePrivilege(SE_CREATE_TOKEN_NAME);

HANDLE hToken;
OpenProcessToken(GetCurrentProcess(), TOKEN_QUERY | TOKEN_QUERY_SOURCE,

&hToken);

SID_IDENTIFIER_AUTHORITY nt = SECURITY_NT_AUTHORITY;

PSID system;
AllocateAndInitializeSid(&nt, 1, SECURITY_LOCAL_SYSTEM_RID,

0, 0, 0, 0, 0, 0, 0, &system);

TOKEN_USER user = {{system, 0}};

LUID luid;
AllocateLocallyUniqueId(&luid);

TOKEN_SOURCE source = {{‘*’, ‘*’, ‘A’, ‘N’, ‘O’, ‘N’, ‘*’, ‘*’},
{luid.LowPart, luid.HighPart}};

LUID authid = SYSTEM_LUID;

PTOKEN_STATISTICS stats
= PTOKEN_STATISTICS(GetFromToken(hToken, TokenStatistics));

NT::SECURITY_QUALITY_OF_SERVICE sqos
= {sizeof sqos, NT::SecurityAnonymous,

SECURITY_STATIC_TRACKING, FALSE};

NT::OBJECT_ATTRIBUTES oa = {sizeof oa, 0, 0, 0, 0, &sqos};

HANDLE hToken2 = 0;

NT::ZwCreateToken(&hToken2, TOKEN_ALL_ACCESS, &oa, TokenPrimary,
NT::PLUID(&authid), // NT::PLUID(&stats->AuthenticationId),
NT::PLARGE_INTEGER(&stats->ExpirationTime),
&user,
PTOKEN_GROUPS(GetFromToken(hToken, TokenGroups)),
PTOKEN_PRIVILEGES(GetFromToken(hToken, TokenPrivileges)),
PTOKEN_OWNER(GetFromToken(hToken, TokenOwner)),
PTOKEN_PRIMARY_GROUP(GetFromToken(hToken, TokenPrimaryGroup)),
PTOKEN_DEFAULT_DACL(GetFromToken(hToken, TokenDefaultDacl)),

1996 Ch08 11.24.99 09:55 Page 205

Tokens: Example 8.1206

&source);

CloseHandle(hToken);

return hToken2;
}

int main()
{

PROCESS_INFORMATION pi;
STARTUPINFO si = {sizeof si};

return CreateProcessAsUser(SystemToken(), 0, “cmd”, 0, 0, FALSE,
CREATE_NEW_CONSOLE | CREATE_NEW_PROCESS_GROUP,
0, 0, &si, &pi);

}

Here error handling is not so great again.

For example, in the function HANDLE SystemToken() you have
BOOL rv = EnablePrivilege(SE_CREATE_TOKEN_NAME);

However, rv is never used!

Example 8.1 copies most of the information for the new token from the existing
token, but changes the token user to be SYSTEM and changes the authentication
identifier to be SYSTEM_LUID, breaking the link between the new token and the cre-
dentials of the current user.

If NT::PLUID(&stats->AuthenticationId) had been used as the authentication iden-
tifier rather than NT::PLUID(&authid), the token would represent SYSTEM on the
local system and the logged on user on the network.

1996 Ch08 11.24.99 09:55 Page 206

9
Synchronization

The system services described in this chapter create and manipulate objects that can
be used to synchronize threads.

ZwWaitForSingleObject

ZwWaitForSingleObject waits for an object to become signaled.
NTSYSAPI
NTSTATUS
NTAPI
ZwWaitForSingleObject(

IN HANDLE Handle,
IN BOOLEAN Alertable,
IN PLARGE_INTEGER Timeout OPTIONAL
);

Parameters

Handle
A handle to an object.The handle must grant SYNCHRONIZE access.

Alertable
A boolean specifying whether the wait can be interrupted by the delivery of a user
APC.

Timeout
Optionally points to a value that specifies the absolute or relative time at which the
wait is to be timed out.A negative value specifies an interval relative to the current
time.The value is expressed in units of 100 nanoseconds.Absolute times track any
changes in the system time; relative times are not affected by system time changes. If
Timeout is a null pointer, the wait will not timeout.

Return Value
Returns STATUS_SUCCESS, STATUS_ALERTED, STATUS_USER_APC, STATUS_TIMEOUT,
STATUS_ABANDONED, or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

1996 CH09 11.24.99 09:55 Page 207

Synchronization: ZwWaitForSingleObject208

Related Win32 Functions
WaitForSingleObject, WaitForSingleObjectEx.

Remarks
WaitForSingleObjectEx exposes most of the functionality of ZwWaitForSingleObject.

The Handle parameter can be a handle to any kernel object type. If the object is not
waitable, it is considered to be always signaled.

ZwSignalAndWaitForSingleObject

ZwSignalAndWaitForSingleObject signals one object and waits for another to become
signaled.
NTSYSAPI
NTSTATUS
NTAPI
ZwSignalAndWaitForSingleObject(

IN HANDLE HandleToSignal,
IN HANDLE HandleToWait,
IN BOOLEAN Alertable,
IN PLARGE_INTEGER Timeout OPTIONAL
);

Parameters

HandleToSignal
A handle to the object that is to be signaled.This object can be a semaphore, a mutant,
or an event. If the handle is a semaphore, SEMAPHORE_MODIFY_STATE access is required. If
the handle is an event, EVENT_MODIFY_STATE access is required. If the handle is a mutant,
SYNCHRONIZE access is assumed because only the owner of a mutant may release it.

HandleToWait
A handle to the object that is to be waited upon.The handle must grant SYNCHRONIZE
access.

Alertable
A boolean specifying whether the wait can be interrupted by the delivery of a
user APC.

Timeout
Optionally points to a value that specifies the absolute or relative time at which the
wait is to be timed out.A negative value specifies an interval relative to the current
time.The value is expressed in units of 100 nanoseconds.Absolute times track any
changes in the system time; relative times are not affected by system time changes. If
Timeout is a null pointer, the wait will not timeout.

1996 CH09 11.24.99 09:55 Page 208

Synchronization: ZwWaitForMultipleObjects 209

Return Value
Returns STATUS_SUCCESS, STATUS_ALERTED, STATUS_USER_APC, STATUS_TIMEOUT,
STATUS_ABANDONED, or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
SignalObjectAndWait.

Remarks
SignalObjectAndWait exposes most of the functionality of
ZwSignalAndWaitForSingleObject.

The HandleToWait parameter can be a handle to any kernel object type. If the object is
not waitable, it is considered to be always signaled.

ZwWaitForMultipleObjects

ZwWaitForMultipleObjects waits for one or more objects to become signaled.
NTSYSAPI
NTSTATUS
NTAPI
ZwWaitForMultipleObjects(

IN ULONG HandleCount,
IN PHANDLE Handles,
IN WAIT_TYPE WaitType,
IN BOOLEAN Alertable,
IN PLARGE_INTEGER Timeout OPTIONAL
);

Parameters

HandleCount
The number of handles to objects to be waited on.This value must be at most
MAXIMUM_WAIT_OBJECTS.

Handles
Points to a caller-allocated buffer or variable that contains the array of object handles
to be waited upon. Each handle must grant SYNCHRONIZE access.

WaitType
Specifies the type of wait to be performed.The permitted values are drawn from the
enumeration WAIT_TYPE:

typedef enum _WAIT_TYPE {
WaitAll, // Wait for any handle to be signaled
WaitAny // Wait for all handles to be signaled

} WAIT_TYPE, *PWAIT_TYPE;

Alertable
A boolean specifying whether the wait can be interrupted by the delivery of a
user APC.

1996 CH09 11.24.99 09:55 Page 209

Synchronization: ZwWaitForMultipleObjects210

Timeout
Optionally points to a value that specifies the absolute or relative time at which the
wait is to be timed out.A negative value specifies an interval relative to the current
time.The value is expressed in units of 100 nanoseconds.Absolute times track any
changes in the system time; relative times are not affected by system time changes. If
Timeout is a null pointer, the wait will not timeout.

Return Value
Returns STATUS_SUCCESS, STATUS_ALERTED, STATUS_USER_APC, STATUS_TIMEOUT,
STATUS_ABANDONED, STATUS_ABANDONED_WAIT_0 to STATUS_ABANDONED_WAIT_63,
STATUS_WAIT_0 to STATUS_WAIT_63, or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
WaitForMultipleObjects, WaitForMultipleObjectsEx.

Remarks
WaitForMultipleObjectsEx exposes most of the functionality of
ZwWaitForMultipleObjects.

The handles in the Handles parameter can be handles to any kernel object type. If the
object is not waitable, it is considered to be always signaled.

ZwCreateTimer

ZwCreateTimer creates or opens a timer object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateTimer(

OUT PHANDLE TimerHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN TIMER_TYPE TimerType
);

Parameters

TimerHandle
Points to a variable that will receive the timer object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the timer object.This parameter
can be zero, or any combination of the following flags:

TIMER_QUERY_STATE Query access
TIMER_MODIFY_STATE Modify access
TIMER_ALL_ACCESS All of the preceding + STANDARD_RIGHTS_ALL

1996 CH09 11.24.99 09:55 Page 210

Synchronization: ZwOpenTimer 211

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for a timer object.

TimerType
Specifies the type of the timer.The permitted values are drawn from the enumeration
TIMER_TYPE:

typedef enum _TIMER_TYPE {
NotificationTimer, // A manual-reset timer
SynchronizationTimer // An auto-reset timer

} TIMER_TYPE;

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
CreateWaitableTimer.

Remarks
CreateWaitableTimer exposes most of the functionality of ZwCreateTimer.

ZwOpenTimer

ZwOpenTimer opens a timer object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenTimer(

OUT PHANDLE TimerHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

TimerHandle
Points to a variable that will receive the timer object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the timer object.This parameter
can be zero, or any combination of the following flags:

TIMER_QUERY_STATE Query access
TIMER_MODIFY_STATE Modify access
TIMER_ALL_ACCESS All of the preceding + STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for a timer object.

1996 CH09 11.24.99 09:55 Page 211

Synchronization: ZwOpenTimer212

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
OpenWaitableTimer.

Remarks
OpenWaitableTimer exposes most of the functionality of ZwOpenTimer.

ZwCancelTimer

ZwCancelTimer deactivates a timer.
NTSYSAPI
NTSTATUS
NTAPI
ZwCancelTimer(

IN HANDLE TimerHandle,
OUT PBOOLEAN PreviousState OPTIONAL
);

Parameters

TimerHandle
A handle to a timer object. The handle must grant TIMER_MODIFY_STATE access.

PreviousState
Optionally points to a variable that receives the signal state of the timer.A value of
true means that the timer is signaled.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
CancelWaitableTimer.

Remarks
CancelWaitableTimer exposes most of the functionality of ZwCancelTimer.

If the timer is not signaled when ZwCancelTimer is invoked, any waiting threads contin-
ue to wait until either they timeout the wait, or the timer is reactivated (by
ZwSetTimer) and eventually signaled.

1996 CH09 11.24.99 09:55 Page 212

Synchronization: ZwSetTimer 213

ZwSetTimer

ZwSetTimer sets properties of and activates a timer.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetTimer(

IN HANDLE TimerHandle,
IN PLARGE_INTEGER DueTime,
IN PTIMER_APC_ROUTINE TimerApcRoutine OPTIONAL,
IN PVOID TimerContext,
IN BOOLEAN Resume,
IN LONG Period,
OUT PBOOLEAN PreviousState OPTIONAL
);

Parameters

TimerHandle
A handle to a timer object.The handle must grant TIMER_MODIFY_STATE access.

DueTime
Points to a value that specifies the absolute or relative time at which the timer is to be
signaled.A negative value specifies an interval relative to the current time.The value is
expressed in units of 100 nanoseconds.Absolute times track any changes in the system
time; relative times are not affected by system time changes.

TimerApcRoutine
Specifies an optional timer APC routine.The timer APC routine has the following
prototype:

VOID (APIENTRY *PTIMER_APC_ROUTINE)(PVOID TimerContext,
ULONG TimerLowValue,
ULONG TimerHighValue);

TimerContext
A void pointer that will be passed as argument to the timer APC routine.

Resume
Specifies whether to restore a system in suspended power conservation mode when
the timer state is set to signaled.

Period
The period of the timer, in milliseconds. If Period is zero, the timer is signaled once. If
Period is greater than zero, the timer is periodic.

PreviousState
Optionally points to a variable that receives the signal state of the timer.A value of
true means that the timer is signaled.

1996 CH09 11.24.99 09:55 Page 213

Synchronization: ZwSetTimer214

Return Value
Returns STATUS_SUCCESS, STATUS_TIMER_RESUME_IGNORED or an error status, such as
STATUS_ACCESS_DENIED or STATUS_INVALID_HANDLE.

Related Win32 Functions
SetWaitableTimer.

Remarks
SetWaitableTimer exposes most of the functionality of ZwSetTimer.

ZwQueryTimer

ZwQueryTimer retrieves information about a timer object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryTimer(

IN HANDLE TimerHandle,
IN TIMER_INFORMATION_CLASS TimerInformationClass,
OUT PVOID TimerInformation,
IN ULONG TimerInformationLength,
OUT PULONG ResultLength OPTIONAL
);

Parameters

TimerHandle
A handle to a timer object.The handle must grant TIMER_QUERY_STATE access.

TimerInformationClass
Specifies the type of timer object information to be queried.The permitted values
are drawn from the enumeration TIMER_INFORMATION_CLASS, described in the following
section.

TimerInformation
Points to a caller-allocated buffer or variable that receives the requested timer object
information.

TimerInformationLength
The size in bytes of TimerInformation, which the caller should set according to the
given TimerInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
TimerInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

1996 CH09 11.24.99 09:55 Page 214

Synchronization: ZwCreateEvent 215

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
None.

Remarks
None.

TIMER_INFORMATION_CLASS
typedef enum _TIMER_INFORMATION_CLASS {

TimerBasicInformation
} TIMER_INFORMATION_CLASS;

TimerBasicInformation
typedef struct _TIMER_BASIC_INFORMATION {

LARGE_INTEGER TimeRemaining;
BOOLEAN SignalState;

} TIMER_BASIC_INFORMATION, *PTIMER_BASIC_INFORMATION;

Members

TimeRemaining
The number of 100-nanosecond units remaining before the timer is next signaled.

SignalState
A boolean indicating whether the timer is signaled.

Remarks
None.

ZwCreateEvent

ZwCreateEvent creates or opens an event object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateEvent(

OUT PHANDLE EventHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN EVENT_TYPE EventType,
IN BOOLEAN InitialState
);

1996 CH09 11.24.99 09:55 Page 215

Synchronization: ZwCreateEvent216

Parameters

EventHandle
Points to a variable that will receive the event object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the event object.This parameter
can be zero, or any combination of the following flags:

EVENT_QUERY_STATE Query access
EVENT_MODIFY_STATE Modify access
EVENT_ALL_ACCESS All of the preceding + STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for an event object.

EventType
Specifies the type of the event.The permitted values are drawn from the enumeration
EVENT_TYPE:

typedef enum _EVENT_TYPE {
NotificationEvent, // A manual-reset event
SynchronizationEvent // An auto-reset event

} EVENT_TYPE;

InitialState
Specifies the initial state of the event. TRUE indicates signaled.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
CreateEvent.

Remarks
CreateEvent exposes most of the functionality of ZwCreateEvent.

ZwOpenEvent

ZwOpenEvent opens an event object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenEvent(

OUT PHANDLE EventHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

1996 CH09 11.24.99 09:55 Page 216

Synchronization: ZwSetEvent 217

Parameters

EventHandle
Points to a variable that will receive the event object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the event object.This parameter
can be zero, or any combination of the following flags:

EVENT_QUERY_STATE Query access
EVENT_MODIFY_STATE Modify access
EVENT_ALL_ACCESS All of the preceding + STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for an event object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
OpenEvent.

Remarks
OpenEvent exposes most of the functionality of ZwOpenEvent.

ZwSetEvent

ZwSetEvent sets an event object to the signaled state.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetEvent(

IN HANDLE EventHandle,
OUT PULONG PreviousState OPTIONAL
);

Parameters

EventHandle
A handle to an event object.The handle must grant EVENT_MODIFY_STATE access.

PreviousState
Optionally points to a variable that receives the previous signal state of the event.A
non-zero value means that the event was signaled.

1996 CH09 11.24.99 09:55 Page 217

Synchronization: ZwSetEvent218

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
SetEvent.

Remarks
SetEvent exposes most of the functionality of ZwSetEvent.

ZwPulseEvent

ZwPulseEvent sets an event object to the signaled state releasing all or one waiting
thread (depending upon the event type) and then resets the event to the unsignaled
state.
NTSYSAPI
NTSTATUS
NTAPI
ZwPulseEvent(

IN HANDLE EventHandle,
OUT PULONG PreviousState OPTIONAL
);

Parameters

EventHandle
A handle to an event object.The handle must grant EVENT_MODIFY_STATE access.

PreviousState
Optionally points to a variable that receives the previous signal state of the event.A
non-zero value means that the event was signaled.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
PulseEvent.

Remarks
PulseEvent exposes most of the functionality of ZwPulseEvent.

1996 CH09 11.24.99 09:55 Page 218

Synchronization: ZwClearEvent 219

ZwResetEvent

ZwResetEvent resets an event object to the unsignaled state.
NTSYSAPI
NTSTATUS
NTAPI
ZwResetEvent(

IN HANDLE EventHandle,
OUT PULONG PreviousState OPTIONAL
);

Parameters

EventHandle
A handle to an event object.The handle must grant EVENT_MODIFY_STATE access.

PreviousState
Optionally points to a variable that receives the previous signal state of the event.A
non-zero value means that the event was signaled.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
The Win32 function ResetEvent uses the native function ZwClearEvent, which differs
from ZwResetEvent by not returning the previous state of the event.

ZwClearEvent

ZwClearEvent resets an event object to the unsignaled state.
NTSYSAPI
NTSTATUS
NTAPI
ZwClearEvent(

IN HANDLE EventHandle
);

Parameters

EventHandle
A handle to an event object.The handle must grant EVENT_MODIFY_STATE access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

1996 CH09 11.24.99 09:55 Page 219

Synchronization: ZwClearEvent220

Related Win32 Functions
ResetEvent.

Remarks
ResetEvent exposes the full functionality of ZwClearEvent.

ZwQueryEvent

ZwQueryEvent retrieves information about an event object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryEvent(

IN HANDLE EventHandle,
IN EVENT_INFORMATION_CLASS EventInformationClass,
OUT PVOID EventInformation,
IN ULONG EventInformationLength,
OUT PULONG ResultLength OPTIONAL
);

Parameters

EventHandle
A handle to an event object.The handle must grant EVENT_QUERY_STATE access.

EventInformationClass
Specifies the type of event object information to be queried.The permitted values
are drawn from the enumeration EVENT_INFORMATION_CLASS, described in the following
section.

EventInformation
Points to a caller-allocated buffer or variable that receives the requested event object
information.

EventInformationLength
The size in bytes of EventInformation, which the caller should set according to the
given EventInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
EventInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

1996 CH09 11.24.99 09:55 Page 220

Synchronization: ZwCreateSemaphore 221

Related Win32 Functions
None.

Remarks
None.

EVENT_INFORMATION_CLASS
typedef enum _EVENT_INFORMATION_CLASS {

EventBasicInformation
} EVENT_INFORMATION_CLASS;

EventBasicInformation
typedef struct _EVENT_BASIC_INFORMATION {

EVENT_TYPE EventType;
LONG SignalState;

} EVENT_BASIC_INFORMATION, *PEVENT_BASIC_INFORMATION;

Members

EventType
The type of the event.The permitted values are drawn from the enumeration
EVENT_TYPE:
typedef enum _EVENT_TYPE {

NotificationEvent, // A manual-reset event
SynchronizationEvent // An auto-reset event

} EVENT_TYPE;

SignalState
Indicates whether the event is signaled.A non-zero value means that the event is
signalled.

Remarks
None.

ZwCreateSemaphore

ZwCreateSemaphore creates or opens a semaphore object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateSemaphore(

OUT PHANDLE SemaphoreHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN LONG InitialCount,
IN LONG MaximumCount
);

1996 CH09 11.24.99 09:55 Page 221

Synchronization: ZwCreateSemaphore222

Parameters

SemaphoreHandle
Points to a variable that will receive the semaphore object handle if the call is
successful.

DesiredAccess
Specifies the type of access that the caller requires to the semaphore object.This para-
meter can be zero, or any combination of the following flags:

SEMAPHORE_QUERY_STATE Query access
SEMAPHORE_MODIFY_STATE Modify access
SEMAPHORE_ALL_ACCESS All of the preceding + STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for a semaphore object.

InitialCount
Specifies the initial count for the semaphore object.

MaximumCount
Specifies the maximum count for the semaphore object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
CreateSemaphore.

Remarks
CreateSemaphore exposes most of the functionality of ZwCreateSemaphore.

ZwOpenSemaphore

ZwOpenSemaphore opens a semaphore object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenSemaphore(

OUT PHANDLE SemaphoreHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

1996 CH09 11.24.99 09:55 Page 222

Synchronization: ZwReleaseSemaphore 223

Parameters

SemaphoreHandle
Points to a variable that will receive the semaphore object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the semaphore object.This para-
meter can be zero, or any combination of the following flags:

SEMAPHORE_QUERY_STATE Query access
SEMAPHORE_MODIFY_STATE Modify access
SEMAPHORE_ALL_ACCESS All of the preceding + STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for a semaphore object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
OpenSemaphore.

Remarks
OpenSemaphore exposes most of the functionality of ZwOpenSemaphore.

ZwReleaseSemaphore

ZwReleaseSemaphore increases the count of a semaphore by a given amount.
NTSYSAPI
NTSTATUS
NTAPI
ZwReleaseSemaphore(

IN HANDLE SemaphoreHandle,
IN LONG ReleaseCount,
OUT PLONG PreviousCount OPTIONAL
);

Parameters

SemaphoreHandle
A handle to a semaphore object.The handle must grant SEMAPHORE_MODIFY_STATE
access.

ReleaseCount
Specifies the amount by which the semaphore object’s current count is to be
increased.

1996 CH09 11.24.99 09:55 Page 223

Synchronization: ZwReleaseSemaphore224

PreviousCount
Optionally points to a variable that receives the previous count for the semaphore.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
ReleaseSemaphore.

Remarks
ReleaseSemaphore exposes the full functionality of ZwReleaseSemaphore.

ZwQuerySemaphore

ZwQuerySemaphore retrieves information about a semaphore object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySemaphore(

IN HANDLE SemaphoreHandle,
IN SEMAPHORE_INFORMATION_CLASS SemaphoreInformationClass,
OUT PVOID SemaphoreInformation,
IN ULONG SemaphoreInformationLength,
OUT PULONG ResultLength OPTIONAL
);

Parameters

SemaphoreHandle
A handle to a semaphore object.The handle must grant SEMAPHORE_QUERY_STATE access.

SemaphoreInformationClass
Specifies the type of semaphore object information to be queried.The permitted val-
ues are drawn from the enumeration SEMAPHORE_INFORMATION_CLASS, described in the
following section.

SemaphoreInformation
Points to a caller-allocated buffer or variable that receives the requested semaphore
object information.

SemaphoreInformationLength
Specifies the size in bytes of SemaphoreInformation, which the caller should set accord-
ing to the given SemaphoreInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
SemaphoreInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

1996 CH09 11.24.99 09:55 Page 224

Synchronization: ZwCreateMutant 225

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
None.

Remarks
None.

SEMAPHORE_INFORMATION_CLASS
typedef enum _SEMAPHORE_INFORMATION_CLASS {

SemaphoreBasicInformation
} SEMAPHORE_INFORMATION_CLASS;

SemaphoreBasicInformation
typedef struct _SEMAPHORE_BASIC_INFORMATION {

LONG CurrentCount;
LONG MaximumCount;

} SEMAPHORE_BASIC_INFORMATION, *PSEMAPHORE_BASIC_INFORMATION;

Members

CurrentCount
Specifies the current count for the semaphore object.

MaximumCount
Specifies the maximum count for the semaphore object.

Remarks
None.

ZwCreateMutant

ZwCreateMutant creates or opens a mutant object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateMutant(

OUT PHANDLE MutantHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN BOOLEAN InitialOwner
);

1996 CH09 11.24.99 09:55 Page 225

Synchronization: ZwCreateMutant226

Parameters

MutantHandle
Points to a variable that will receive the mutant object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the mutant object.This parameter
can be zero, or any combination of the following flags:

MUTANT_QUERY_STATE Query access
MUTANT_ALL_ACCESS All of the preceding + STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for a mutant object.

InitialOwner
Specifies whether the calling thread should be the initial owner of the mutant.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
CreateMutex.

Remarks
CreateMutex exposes most of the functionality of ZwCreateMutant.

ZwOpenMutant

ZwOpenMutant opens a mutant object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenMutant(

OUT PHANDLE MutantHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

MutantHandle
Points to a variable that will receive the mutant object handle if the call is successful.

1996 CH09 11.24.99 09:55 Page 226

Synchronization: ZwReleaseMutant 227

DesiredAccess
Specifies the type of access that the caller requires to the mutant object.This parameter
can be zero, or any combination of the following flags:

MUTANT_QUERY_STATE Query access
MUTANT_ALL_ACCESS All of the preceding + STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for a mutant object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
OpenMutex.

Remarks
OpenMutex exposes most of the functionality of ZwOpenMutant.

ZwReleaseMutant

ZwReleaseMutant releases ownership of a mutant object.
NTSYSAPI
NTSTATUS
NTAPI
ZwReleaseMutant(

IN HANDLE MutantHandle,
OUT PULONG PreviousState
);

Parameters

MutantHandle
A handle to a mutant object.The handle need not grant any specific access.

PreviousState
Optionally points to a variable which receives the previous state of the semaphore.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
ReleaseMutex.

Remarks
ReleaseMutex exposes most of the functionality of ZwReleaseMutant.

1996 CH09 11.24.99 09:55 Page 227

Synchronization: ZwQueryMutant228

ZwQueryMutant

ZwQueryMutant retrieves information about a mutant object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryMutant(

IN HANDLE MutantHandle,
IN MUTANT_INFORMATION_CLASS MutantInformationClass,
OUT PVOID MutantInformation,
IN ULONG MutantInformationLength,
OUT PULONG ResultLength OPTIONAL
);

Parameters

MutantHandle
A handle to a mutant object.The handle must grant MUTANT_QUERY_STATE access.

MutantInformationClass
Specifies the type of mutant object information to be queried.The permitted values
are drawn from the enumeration MUTANT_INFORMATION_CLASS, described in the following
section.

MutantInformation
Points to a caller-allocated buffer or variable that receives the requested mutant object
information.

MutantInformationLength
Specifies the size in bytes of MutantInformation, which the caller should set according
to the given MutantInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
MutantInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
None.

Remarks
None.

1996 CH09 11.24.99 09:55 Page 228

Synchronization: ZwCreateIoCompletion 229

MUTANT_INFORMATION_CLASS
typedef enum _MUTANT_INFORMATION_CLASS {

MutantBasicInformation
} MUTANT_INFORMATION_CLASS;

MutantBasicInformation
typedef struct _MUTANT_BASIC_INFORMATION {

LONG SignalState;
BOOLEAN Owned;
BOOLEAN Abandoned;

} MUTANT_BASIC_INFORMATION, *PMUTANT_BASIC_INFORMATION;

Members

SignalState
The signal state of the mutant.A positive value indicates that the mutant is signaled.
A non-positive value indicates that a thread has recursively acquired the mutant
(1 - SignalState) times.

Owned
A boolean indicating whether the mutant is owned by the current thread.

Abandoned
A boolean indicating whether the mutant has been abandoned (that is, a thread owned
the mutant when it terminated).

Remarks
None.

ZwCreateIoCompletion

ZwCreateIoCompletion creates or opens an I/O completion object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateIoCompletion(

OUT PHANDLE IoCompletionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN ULONG NumberOfConcurrentThreads
);

Parameters

IoCompletionHandle
Points to a variable that will receive the I/O completion object handle if the call is
successful.

1996 CH09 11.24.99 09:55 Page 229

Synchronization: ZwCreateIoCompletion230

DesiredAccess
Specifies the type of access that the caller requires to the I/O completion object.This
parameter can be zero, or any combination of the following flags:

IO_COMPLETION_QUERY_STATE Query access
IO_COMPLETION_MODIFY_STATE Modify access
IO_COMPLETION_ALL_ACCESS All of the preceding + STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK and
OBJ_PERMANENT are not valid attributes for an I/O completion object.

NumberOfConcurrentThreads
Specifies the number of threads that are allowed to execute concurrently.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
CreateIoCompletionPort.

Remarks
The Win32 function CreateIoCompletionPort creates an I/O completion object by
calling ZwCreateIoCompletion and then optionally associates the I/O completion object
handle and a completion key with a file handle by calling ZwSetInformationFile with
a FileInformationClass of FileCompletionInformation.

ZwOpenIoCompletion

ZwOpenIoCompletion opens an I/O completion object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenIoCompletion(

OUT PHANDLE IoCompletionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

IoCompletionHandle
Points to a variable that will receive the I/O completion object handle if the call is
successful.

1996 CH09 11.24.99 09:55 Page 230

Synchronization: ZwSetIoCompletion 231

DesiredAccess
Specifies the type of access that the caller requires to the I/O completion object.This
parameter can be zero, or any combination of the following flags:

IO_COMPLETION_QUERY_STATE Query access
IO_COMPLETION_MODIFY_STATE Modify access
IO_COMPLETION_ALL_ACCESS All of the preceding + STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK and
OBJ_PERMANENT are not valid attributes for an I/O completion object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
None.

Remarks
None.

ZwSetIoCompletion

ZwSetIoCompletion queues an I/O completion message to an I/O completion object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetIoCompletion(

IN HANDLE IoCompletionHandle,
IN ULONG CompletionKey,
IN ULONG CompletionValue,
IN NTSTATUS Status,
IN ULONG Information
);

Parameters

IoCompletionHandle
A handle to an I/O completion object.The handle must grant
IO_COMPLETION_MODIFY_STATE access.

CompletionKey
Specifies a value to be returned to a caller of ZwRemoveIoCompletion via the
CompletionKey parameter of that routine.

CompletionValue
Specifies a value to be returned to a caller of ZwRemoveIoCompletion via the
CompletionValue parameter of that routine.

1996 CH09 11.24.99 09:55 Page 231

Synchronization: ZwSetIoCompletion232

Status
Specifies a value to be returned to a caller of ZwRemoveIoCompletion via the parameter
IoStatusBlock->Status.

Information
Specifies a value to be returned to a caller of ZwRemoveIoCompletion via the parameter
IoStatusBlock->Information.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
PostQueuedCompletionStatus.

Remarks
PostQueuedCompletionStatus exposes most of the functionality of ZwSetIoCompletion.

ZwRemoveIoCompletion

ZwRemoveIoCompletion dequeues an I/O completion message from an I/O completion
object.
NTSYSAPI
NTSTATUS
NTAPI
ZwRemoveIoCompletion(

IN HANDLE IoCompletionHandle,
OUT PULONG CompletionKey,
OUT PULONG CompletionValue,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER Timeout OPTIONAL
);

Parameters

IoCompletionHandle
A handle to an I/O completion object.The handle must grant
IO_COMPLETION_MODIFY_STATE access.

CompletionKey
Points to a variable that receives the value of the CompletionKey.

CompletionValue
Points to a variable that receives the value of the CompletionValue.

IoStatusBlock
Points to a caller-allocated buffer or variable that receives the IO_STATUS_BLOCK of the
completed I/O operation.

1996 CH09 11.24.99 09:55 Page 232

Synchronization: ZwQueryIoCompletion 233

Timeout
Optionally points to a value that specifies the absolute or relative time at which the
wait is to be timed out.A negative value specifies an interval relative to the current
time.The value is expressed in units of 100 nanoseconds.Absolute times track any
changes in the system time; relative times are not affected by system time changes. If
Timeout is a null pointer, the wait will not timeout.

Return Value
Returns STATUS_SUCCESS, STATUS_TIMEOUT or an error status, such as
STATUS_ACCESS_DENIED or STATUS_INVALID_HANDLE.

Related Win32 Functions
GetQueuedCompletionStatus.

Remarks
GetQueuedCompletionStatus exposes most of the functionality of
ZwRemoveIoCompletion.

ZwQueryIoCompletion

ZwQueryIoCompletion retrieves information about an I/O completion object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryIoCompletion(

IN HANDLE IoCompletionHandle,
IN IO_COMPLETION_INFORMATION_CLASS IoCompletionInformationClass,
OUT PVOID IoCompletionInformation,
IN ULONG IoCompletionInformationLength,
OUT PULONG ResultLength OPTIONAL
);

Parameters

IoCompletionHandle
A handle to an I/O completion object.The handle must grant
IO_COMPLETION_QUERY_STATE access.

IoCompletionInformationClass
Specifies the type of I/O completion object information to be queried.The permitted
values are drawn from the enumeration IO_COMPLETION_INFORMATION_CLASS, described
in the following section.

IoCompletionInformation
Points to a caller-allocated buffer or variable that receives the requested I/O comple-
tion object information.

1996 CH09 11.24.99 09:55 Page 233

Synchronization: ZwQueryIoCompletion234

IoCompletionInformationLength
Specifies the size in bytes of IoCompletionInformation, which the caller should set
according to the given IoCompletionInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
IoCompletionInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
None.

Remarks
None.

IO_COMPLETION_INFORMATION_CLASS
typedef enum _IO_COMPLETION_INFORMATION_CLASS {

IoCompletionBasicInformation
} IO_COMPLETION_INFORMATION_CLASS;

IoCompletionBasicInformation
typedef struct _IO_COMPLETION_BASIC_INFORMATION {

LONG SignalState;
} IO_COMPLETION_BASIC_INFORMATION, *PIO_COMPLETION_BASIC_INFORMATION;

Members

SignalState
The signal state of the I/O completion object.A positive value indicates that the I/O
completion object is signaled.

Remarks
None.

ZwCreateEventPair

ZwCreateEventPair creates or opens an event pair object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateEventPair(

1996 CH09 11.24.99 09:55 Page 234

Synchronization: ZwOpenEventPair 235

OUT PHANDLE EventPairHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

EventPairHandle
Points to a variable that will receive the event pair object handle if the call is
successful.

DesiredAccess
Specifies the type of access that the caller requires to the event pair object.This para-
meter can be zero or STANDARD_RIGHTS_ALL.

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for an event pair object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
None.

Remarks
An event pair object is an object constructed from two KEVENT structures which are
conventionally named “High” and “Low.”They are optimized for fast client server
interactions and are not often used by the operating system, having been superseded by
the LPC port mechanism.

pstat.exe and kdextx86.dll report some threads as having a wait reason of
“EventPairLow,” but this is misleading.The numeric value of the wait reason for these
threads is 0xF, and newer versions of ntddk.h translate this as “WrQueue” (0xE is
“WrEventPair”)—which better reflects the true reason for the wait. pstat and kdextx86
translate 0xE as “WrEventPairHigh” and 0xF as “WrEventPairLow.”

ZwOpenEventPair

ZwOpenEventPair opens an event pair object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenEventPair(

OUT PHANDLE EventPairHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

1996 CH09 11.24.99 09:55 Page 235

Synchronization: ZwOpenEventPair236

Parameters

EventPairHandle
Points to a variable that will receive the event pair object handle if the call is
successful.

DesiredAccess
Specifies the type of access that the caller requires to the event pair object.This para-
meter can be zero or STANDARD_RIGHTS_ALL.

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_OPENLINK is not a valid
attribute for an event pair object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
None.

Remarks
None.

ZwWaitLowEventPair

ZwWaitLowEventPair waits for the low event of an event pair to become signaled.
NTSYSAPI
NTSTATUS
NTAPI
ZwWaitLowEventPair(

IN HANDLE EventPairHandle
);

Parameters

EventPairHandle
A handle to an event pair object.The handle must grant SYNCHRONIZE access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

1996 CH09 11.24.99 09:55 Page 236

Synchronization: ZwSetLowWaitHighEventPair 237

Remarks
The two events in an event pair are named “Low” and “High.” ZwWaitLowEventPair

waits for the Low event to be set.The EventPairHandle itself is not directly waitable.

ZwWaitHighEventPair

ZwWaitHighEventPair waits for the high event of an event pair to become signaled.
NTSYSAPI
NTSTATUS
NTAPI
ZwWaitHighEventPair(

IN HANDLE EventPairHandle
);

Parameters

EventPairHandle
A handle to an event pair object.The handle must grant SYNCHRONIZE access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
The two events in an event pair are named “Low” and “High.” ZwWaitHighEventPair

waits for the High event to be set.The EventPairHandle itself is not directly waitable.

ZwSetLowWaitHighEventPair

ZwSetLowWaitHighEventPair signals the low event of an event pair and waits for the
high event to become signaled.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetLowWaitHighEventPair(

IN HANDLE EventPairHandle
);

Parameters

EventPairHandle
A handle to an event pair object.The handle must grant SYNCHRONIZE access.

1996 CH09 11.24.99 09:55 Page 237

Synchronization: ZwSetLowWaitHighEventPair238

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
The two events in an event pair are named “Low” and “High.”
ZwSetLowWaitHighEventPair signals the Low event and waits for the High event to be
set. If a thread is waiting for the Low event, the system switches immediately to that
thread rather choosing a thread to run based on scheduling priorities.This is the same
mechanism that is used by LPC ports to improve the performance of client server
interactions.

ZwSetHighWaitLowEventPair

ZwSetHighWaitLowEventPair signals the high event of an event pair and waits for the
low event to become signaled.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetHighWaitLowEventPair(

IN HANDLE EventPairHandle
);

Parameters

EventPairHandle
A handle to an event pair object. The handle must grant SYNCHRONIZE access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
The two events in an event pair are named “Low” and “High.”
ZwSetHighWaitLowEventPair signals the High event and waits for the Low event to be
set. If a thread is waiting for the High event, the system switches immediately to that
thread rather than choosing a thread to run based on scheduling priorities.This is the
same mechanism hat is used by LPC ports to improve the performance of client server
interactions.

1996 CH09 11.24.99 09:55 Page 238

Synchronization: ZwSetHighEventPair 239

ZwSetLowEventPair

ZwSetLowEventPair signals the low event of an event pair object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetLowEventPair(

IN HANDLE EventPairHandle
);

Parameters

EventPairHandle
A handle to an event pair object.The handle must grant SYNCHRONIZE access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
The two events in an event pair are named “Low” and “High.” ZwSetLowEventPair

signals the Low event.

ZwSetHighEventPair

ZwSetHighEventPair signals the high event of an event pair object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetHighEventPair(

IN HANDLE EventPairHandle
);

Parameters

EventPairHandle
A handle to an event pair object.The handle must grant SYNCHRONIZE access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

1996 CH09 11.24.99 09:55 Page 239

Synchronization: ZwSetHighEventPair240

Related Win32 Functions
None.

Remarks
The two events in an event pair are named “Low” and “High.” ZwSetHighEventPair

signals the High event.

1996 CH09 11.24.99 09:55 Page 240

10
Time

The system services described in this chapter are loosely concerned with time and
timing.

ZwQuerySystemTime

ZwQuerySystemTime retrieves the system time.
NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySystemTime(

OUT PLARGE_INTEGER CurrentTime
);

Parameters

CurrentTime
Points to a variable that receives the current time of day in the standard time format
(that is, the number of 100-nanosecond intervals since January 1, 1601).

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
GetSystemTime and GetSystemTimeAsFileTime read from the KUSER_SHARED_DATA page.
This page is mapped read-only into the user mode range of the virtual address and
read-write in the kernel range.The system clock tick updates the system time, which
is stored in this page directly. Reading the system time from this page is faster than
calling ZwQuerySystemTime.

The KUSER_SHARED_DATA structure is defined in the Windows 2000 versions of ntddk.h.

1996 CH10 11/19/99 12:27 PM Page 1

Time: ZwSetSystemTime2

ZwSetSystemTime

ZwSetSystemTime sets the system time.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetSystemTime(

IN PLARGE_INTEGER NewTime,
OUT PLARGE_INTEGER OldTime OPTIONAL
);

Parameters

NewTime
Points to a variable that specifies the new time of day in the standard time format (that
is, the number of 100-nanosecond intervals since January 1, 1601).

OldTime
Optionally points to a variable that receives the old time of day in the standard time
format (that is, the number of 100-nanosecond intervals since January 1, 1601).

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions
SetSystemTime.

Remarks
SeSystemtimePrivilege is required to set the system time.

ZwQueryPerformanceCounter

ZwQueryPerformanceCounter retrieves information from the high-resolution
performance counter.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryPerformanceCounter(

OUT PLARGE_INTEGER PerformanceCount,
OUT PLARGE_INTEGER PerformanceFrequency OPTIONAL
);

Parameters

PerformanceCount
Points to a variable that receives the current value of the performance counter.

1996 CH10 11/19/99 12:27 PM Page 2

Time: ZwSetTimerResolution 3

PerformanceFrequency
Optionally points to a variable that receives the frequency of the performance counter
in units of counts per second.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
QueryPerformanceCounter, QueryPerformanceFrequency.

Remarks
Collectively QueryPerformanceCounter and QueryPerformanceFrequency expose the full
functionality of ZwQueryPerformanceCounter.

ZwSetTimerResolution

ZwSetTimerResolution sets the resolution of the system timer.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetTimerResolution(

IN ULONG RequestedResolution,
IN BOOLEAN Set,
OUT PULONG ActualResolution
);

Parameters

RequestedResolution
The requested timer resolution in units of 100-nanoseconds.

Set
Specifies whether the requested resolution should be established or revoked.

ActualResolution
Points to a variable that receives the actual timer resolution in units of
100-nanoseconds.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_TIMER_RESOLUTION_NOT_SET.

Related Win32 Functions
timeBeginPeriod, timeEndPeriod.

Remarks
None.

1996 CH10 11/19/99 12:27 PM Page 3

Time: ZwQueryTimerResolution4

ZwQueryTimerResolution

ZwQueryTimerResolution retrieves information about the resolution of the system
timer.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryTimerResolution(

OUT PULONG CoarsestResolution,
OUT PULONG FinestResolution,
OUT PULONG ActualResolution
);

Parameters

CoarsestResolution
Points to a variable that receives the coarsest timer resolution, which can be set in
units of 100-nanoseconds.

FinestResolution
Points to a variable that receives the finest timer resolution, which can be set in units
of 100-nanoseconds.

ActualResolution
Points to a variable that receives the actual timer resolution in units of
100-nanoseconds.

Related Win32 Functions
None.

Remarks
None.

ZwDelayExecution

ZwDelayExecution suspends the execution of the current thread for a specified interval.
NTSYSAPI
NTSTATUS
NTAPI
ZwDelayExecution(

IN BOOLEAN Alertable,
IN PLARGE_INTEGER Interval
);

Parameters

Alertable
A boolean specifying whether the delay can be interrupted by the delivery of
a user APC.

1996 CH10 11/19/99 12:27 PM Page 4

Time: ZwGetTickCount 5

Interval
Points to a value that specifies the absolute or relative time at which the delay is to
end.A negative value specifies an interval relative to the current time.The value is
expressed in units of 100 nanoseconds.Absolute times track any changes in the system
time; relative times are not affected by system time changes.

Return Value
Returns STATUS_SUCCESS, STATUS_ALERTED, STATUS_USER_APC, or an error status.

Related Win32 Functions
Sleep, SleepEx.

Remarks
SleepEx exposes most of the functionality of ZwDelayExecution.

ZwYieldExecution

ZwYieldExecution yields the use of the processor by the current thread to any other
thread that is ready to use it.
NTSYSAPI
NTSTATUS
NTAPI
ZwYieldExecution(

VOID
);

Parameters
None

Return Value
Returns STATUS_SUCCESS or STATUS_NO_YIELD_PERFORMED.

Related Win32 Functions
SwitchToThread.

Remarks
SwitchToThread exposes the full functionality of ZwYieldExecution.

ZwGetTickCount

ZwGetTickCount retrieves the number of milliseconds that have elapsed since the system
booted.
NTSYSAPI
ULONG
NTAPI
ZwGetTickCount(

VOID
);

1996 CH10 11/19/99 12:27 PM Page 5

Time: ZwGetTickCount6

Parameters
None.

Return Value
Returns the number of milliseconds that have elapsed since the system was booted.

Related Win32 Functions
None.

Remarks
GetTickCount reads from the KUSER_SHARED_DATA page.This page is mapped read-only
into the user mode range of the virtual address and read-write in the kernel range.The
system clock tick updates the system tick count, which is stored in this page directly.
Reading the tick count from this page is faster than calling ZwGetTickCount.

The KUSER_SHARED_DATA structure is defined in the Windows 2000 versions of ntddk.h.

1996 CH10 11/19/99 12:27 PM Page 6

11
Execution Profiling

The system services described in this chapter create and manipulate objects that gather
execution profiling information.

KPROFILE_SOURCE
typedef enum _KPROFILE_SOURCE {

ProfileTime
} KPROFILE_SOURCE;

Remarks
KPROFILE_SOURCE is defined in ntddk.h, and the definition there includes additional
values. However only ProfileTime is implemented for the Intel family of processors
by the standard Hardware Abstraction Layer (HAL) (named HAL.DLL on the installa-
tion CD).

ZwCreateProfile

ZwCreateProfile creates a profile object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateProfile(

OUT PHANDLE ProfileHandle,
IN HANDLE ProcessHandle,
IN PVOID Base,
IN ULONG Size,
IN ULONG BucketShift,
IN PULONG Buffer,
IN ULONG BufferLength,
IN KPROFILE_SOURCE Source,
IN ULONG ProcessorMask
);

1996 CH11 11/19/99 12:27 PM Page 1

Execution Profiling: ZwCreateProfile2

Parameters

ProfileHandle
Points to a variable that will receive the profile object handle if the call is successful.

ProcessHandle
A handle of a process object, representing the process for which profile data should be
gathered.The handle must grant PROCESS_QUERY_INFORMATION access. If this handle is a
null pointer, profile data is gathered for the system.

Base
The base address of a region of memory to profile.

Size
The size, in bytes, of a region of memory to profile.

BucketShift
Specifies the number of bits of right-shift to be applied to the instruction pointer
when selecting the bucket to be incremented.Valid shift sizes are 0 to 31; if size is
greater than 0x10000, the shift size must be in the range 2 to 31.

Buffer
Points to a caller-allocated buffer or variable that receives an array of ULONG values, one
per bucket, representing the hit count for each bucket.

BufferLength
The size, in bytes, of Buffer.

Source
The source of the event that triggers sampling of the instruction pointer.

ProcessorMask
A bit array of flags specifying whether profiling information should be gathered on the
corresponding processor. If ProcessorMask is zero, profiling information is gathered on
all active processors.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE,
STATUS_ACCESS_DENIED, STATUS_PRIVILEGE_NOT_HELD, or STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions
None.

1996 CH11 11/19/99 12:27 PM Page 2

Execution Profiling: ZwQueryIntervalProfile 3

Remarks
SeSystemProfilePrivilege is required to profile the system.

A profile source is a source of events.When an event from the source occurs, the
processor instruction pointer (Eip) is sampled, and if it lies in the range Base to Base+Size
of an active (started) profile object, the Buffer element at (Eip – Base) >>
BucketShift is incremented.

Example 11.1 demonstrates the use of the profiling APIs to profile the kernel.

ZwSetIntervalProfile

ZwSetIntervalProfile sets the interval between profiling samples for the specified
profiling source.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetIntervalProfile(

IN ULONG Interval,
IN KPROFILE_SOURCE Source
);

Parameters

Interval
Specifies the interval between profiling samples.

Source
Specifies the source of profiling events to be set.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
For the ProfileTime source, the interval unit is 100 nanoseconds; for other sources
the interval might be the number of events from the event source to ignore between
sampling.

ZwQueryIntervalProfile

ZwQueryIntervalProfile retrieves the interval between profiling samples for the
specified profiling source.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryIntervalProfile(

1996 CH11 11/19/99 12:27 PM Page 3

Execution Profiling: ZwQueryIntervalProfile4

IN KPROFILE_SOURCE Source,
OUT PULONG Interval
);

Parameters

Source
Specifies the source of profiling events to be queried.

Interval
Points to a variable that receives the interval between profiling samples.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
None.

ZwStartProfile

ZwStartProfile starts the collection of profiling data.
NTSYSAPI
NTSTATUS
NTAPI
ZwStartProfile(

IN HANDLE ProfileHandle
);

Parameters

ProfileHandle
A handle to a profile object. The handle must grant PROFILE_START_STOP access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE,
STATUS_ACCESS_DENIED, STATUS_PROFILING_NOT_STOPPED, or
STATUS_PROFILING_AT_LIMIT.

Related Win32 Functions
None.

Remarks
None.

1996 CH11 11/19/99 12:27 PM Page 4

Execution Profiling: Example 11.1 5

ZwStopProfile

ZwStopProfile stops the collection of profiling data.
NTSYSAPI
NTSTATUS
NTAPI
ZwStopProfile(

IN HANDLE ProfileHandle
);

Parameters

ProfileHandle
A handle to a profile object.The handle must grant PROFILE_START_STOP access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE,
STATUS_ACCESS_DENIED, or STATUS_PROFILING_NOT_STARTED.

Related Win32 Functions
None.

Remarks
None.

Example 11.1: Profiling the Kernel
#include “ntdll.h”
#include <stdio.h>
#include <imagehlp.h>

HANDLE hWakeup;

PULONG LoadDrivers()
{

ULONG n = 0x1000;
PULONG p = new ULONG[n];

while (NT::ZwQuerySystemInformation(NT::SystemModuleInformation, p, n, 0)
== STATUS_INFO_LENGTH_MISMATCH)

delete [] p, p = new ULONG[n = n * 2];
return p;

}

BOOL WINAPI ConsoleCtrlHandler(DWORD dwCtrlType)
{

return dwCtrlType == CTRL_C_EVENT ? SetEvent(hWakeup) : FALSE;
}

int main()
{

ULONG shift = 3;

1996 CH11 11/19/99 12:27 PM Page 5

Execution Profiling: Example 11.16

EnablePrivilege(SE_SYSTEM_PROFILE_NAME);

PULONG modules = LoadDrivers();

NT::ZwSetIntervalProfile(10000, NT::ProfileTime);

NT::PSYSTEM_MODULE_INFORMATION m
= NT::PSYSTEM_MODULE_INFORMATION(modules + 1);

PHANDLE h = new HANDLE[*modules];

PULONG* p = new PULONG[*modules];

for (ULONG i = 0; i < *modules; i++) {

ULONG n = (m[i].Size >> (shift - 2)) + 1;

p[i] = PULONG(VirtualAlloc(0, n, MEM_COMMIT, PAGE_READWRITE));

NT::ZwCreateProfile(h + i, 0, m[i].Base, m[i].Size,
shift, p[i], n, NT::ProfileTime, 0);

NT::ZwStartProfile(h[i]);
}

hWakeup = CreateEvent(0, FALSE, FALSE, 0);

SetConsoleCtrlHandler(ConsoleCtrlHandler, TRUE);

printf(“collecting...\n”);

WaitForSingleObject(hWakeup, INFINITE);

for (i = 0; i < *modules; i++) {

NT::ZwStopProfile(h[i]);

CloseHandle(h[i]);
}

SymInitialize(0, 0, FALSE);
SymSetOptions(SymGetOptions() | SYMOPT_DEFERRED_LOADS | SYMOPT_UNDNAME);

for (i = 0; i < *modules; i++) {

SymLoadModule(0, 0, m[i].ImageName,
m[i].ImageName + m[i].ModuleNameOffset,
ULONG(m[i].Base), m[i].Size);

printf(“%s\n”, m[i].ImageName + m[i].ModuleNameOffset);

ULONG n = (m[i].Size >> shift) + 1;

for (ULONG j = 0; j < n; j++) {

if (p[i][j] != 0) {

IMAGEHLP_SYMBOL symbol[10];

symbol[0].SizeOfStruct = sizeof symbol[0];
symbol[0].MaxNameLength = sizeof symbol - sizeof symbol[0];

1996 CH11 11/19/99 12:27 PM Page 6

Execution Profiling: Example 11.1 7

ULONG disp = 0;

SymGetSymFromAddr(0, ULONG(m[i].Base) + (j << shift),
&disp, symbol);

printf(“%6ld %s+0x%lx\n”, p[i][j], symbol[0].Name, disp);
}

}

SymUnloadModule(0, ULONG(m[i].Base));

VirtualFree(p[i], 0, MEM_RELEASE);
}

SymCleanup(0);

delete [] m;
delete [] h;
delete [] p;

return 0;
}

Example 11.1 implements broadly similar functionality to that found in the resource
kit utility kernprof.exe. It uses ZwQuerySystemInformation to obtain the size and base
address of the kernel modules and then creates and starts a profile object for each
module. Data is gathered until interrupted by control-C and then the imagehlp library
is used to help dump the collected data.

It is only useful for a profile to cover the code sections of a module, but it is harmless
(if wasteful of buffer space) if the profile covers the whole module.

The rounding of the sampled instruction pointer that results from applying the
BucketShift has the consequence that some samples are attributed to the wrong
symbolic name.This problem is compounded in Windows 2000 because most of the
executable modules have been through an optimization process that reorders the
instructions of the executable to improve locality of reference; this means that the
instructions that implement a routine are no longer contiguous in memory.Although
the symbol files contain information about this reordering (the omap data), the inci-
dence of false attribution is still quite high.

In the section of winbase.h that defines the values of the dwCreationFlag parameter
of CreateProcess, the value PROFILE_USER also appears. If this value is specified when
calling CreateProcess then, when kernel32.dll is initialized in the new process,
psapi.dll is loaded and creates profiles for the user mode modules of the process, and
when the process ends the collected data is written to the file “profile.out.” Some para-
meters of the profiling performed by psapi.dll can be controlled by the resource kit
utility profile.exe, which creates a named shared memory region to hold the parame-
ters and then starts the program to be profiled with the PROFILE_USER flag; psapi.dll
checks for the presence of this named shared memory region and, if found, customizes
its behavior accordingly.

1996 CH11 11/19/99 12:27 PM Page 7

1996 CH11 11/19/99 12:27 PM Page 8

12
Ports (Local

Procedure Calls)

The system services described in this chapter create and manipulate port objects. Port
objects are used to implement the Local Procedure Call (LPC) mechanism.

Port objects are not directly exposed via the Win32 API, but they are used to imple-
ment the “ncalrpc” Remote Procedure Call (RPC) transport.The RPC run-time
library greatly simplifies the use of port objects, but the library (rpcrt4.dll) imports
functions from kernel32.dll, and so it can only be used by Win32 applications.

Port objects must be used explicitly to receive and process messages sent by the oper-
ating system, such as debug and exception messages. Example D.4 in Appendix D,
“Exceptions and Debugging,” demonstrates the use of some of the port functions to
handle debug event messages.

PORT_MESSAGE
typedef struct _PORT_MESSAGE {

USHORT DataSize;
USHORT MessageSize;
USHORT MessageType;
USHORT VirtualRangesOffset;
CLIENT_ID ClientId;
ULONG MessageId;
ULONG SectionSize;
// UCHAR Data[];

} PORT_MESSAGE, *PPORT_MESSAGE;

Members

DataSize
The size in bytes of the data immediately following the PORT_MESSAGE structure.

MessageSize
The size in bytes of the message; this includes the size of the PORT_MESSAGE structure,
the following data, and any additional trailing space that could be used to hold
further data.

1996 Ch12 12/2/99 9:30 AM Page 255

Ports (Local Procedure Calls): PORT_MESSAGE256

MessageType
Specifies the type of the message.The permitted values are drawn from the enumera-
tion LPC_TYPE:
typedef enum _LPC_TYPE {

LPC_NEW_MESSAGE, // A new message
LPC_REQUEST, // A request message
LPC_REPLY, // A reply to a request message
LPC_DATAGRAM, //
LPC_LOST_REPLY, //
LPC_PORT_CLOSED, // Sent when port is deleted
LPC_CLIENT_DIED, // Messages to thread termination ports
LPC_EXCEPTION, // Messages to thread exception port
LPC_DEBUG_EVENT, // Messages to thread debug port
LPC_ERROR_EVENT, // Used by ZwRaiseHardError
LPC_CONNECTION_REQUEST // Used by ZwConnectPort

} LPC_TYPE;

VirtualRangesOffset
The offset, in bytes, from the start of the PORT_MESSAGE structure to an array of virtual
address ranges.The format of the virtual address ranges is a ULONG count of the number
of ranges immediately followed by an array of PVOID/ULONG address/length pairs.

ClientId
The client identifier (thread and process identifiers) of the sender of the message.

MessageId
A numeric identifier of the particular instance of the message.

SectionSize
The size, in bytes, of the section created by the sender of the message.

Data
The data of the message.

Remarks
All messages sent via ports begin with a PORT_MESSAGE header.

When initializing a PORT_MESSAGE structure, the MessageType should always be set to
LPC_NEW_MESSAGE; when replying to a received message, the MessageType and
MessageId of the received message should be copied to the reply message.The
MessageType is updated by the system when the message is transferred.

The remaining message types can only be generated by kernel mode code calling
LpcRequestPort or LpcRequestWaitReplyPort.

The amount of data that can be transferred with the PORT_MESSAGE is limited to about
300 bytes.

1996 Ch12 12/2/99 9:30 AM Page 256

Ports (Local Procedure Calls): PORT_SECTION_READ 257

PORT_SECTION_WRITE
typedef struct _PORT_SECTION_WRITE {

ULONG Length;
HANDLE SectionHandle;
ULONG SectionOffset;
ULONG ViewSize;
PVOID ViewBase;
PVOID TargetViewBase;

} PORT_SECTION_WRITE, *PPORT_SECTION_WRITE;

Members

Length
The size, in bytes, of the PORT_SECTION_WRITE structure.

SectionHandle
A handle to a section object.The handle must grant SECTION_MAP_WRITE and
SECTION_MAP_READ access.

SectionOffset
The offset in the section to map a view for the port data area.The offset must be
aligned with the allocation granularity of the system.

ViewSize
The size, in bytes, of the view.

ViewBase
The base address of the view in the creator of the port section.

TargetViewBase
The base address of the view in the process connected to the port.

Remarks
The creator of the port section initializes the members Length, SectionHandle,
SectionOffset and ViewSize; the other members are initialized by the system.

Port sections can be used to transfer data that is too large to fit in a port message.The
system maps a view of the section in the peer process and makes the base address of
the view available to the creator of the port section.The creator of the port section
can then either write data to the view in self-relative format, or can fix up any point-
ers in the data so that they are valid in the context of the peer process.

PORT_SECTION_READ
typedef struct _PORT_SECTION_READ {

ULONG Length;
ULONG ViewSize;
ULONG ViewBase;

} PORT_SECTION_READ, *PPORT_SECTION_READ;

1996 Ch12 12/2/99 9:30 AM Page 257

Ports (Local Procedure Calls): PORT_SECTION_READ258

Members

Length
The size, in bytes, of the PORT_SECTION_READ structure.

ViewSize
The size, in bytes, of the view.

ViewBase
The base address of the view.

Remarks
The peer of a process that creates a port section learns about the base address and view
size of the section from the members of the PORT_SECTION_READ structure.

ZwCreatePort

ZwCreatePort creates a port object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreatePort(

OUT PHANDLE PortHandle,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN ULONG MaxDataSize,
IN ULONG MaxMessageSize,
IN ULONG Reserved
);

Parameters

PortHandle
Points to a variable that will receive the port object handle if the call is successful.

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_KERNEL_HANDLE,
OBJ_OPENLINK, OBJ_OPENIF, OBJ_EXCLUSIVE, OBJ_PERMANENT, and OBJ_INHERIT are not
valid attributes for a port object.

MaxDataSize
The maximum size, in bytes, of data that can be sent through the port.

MaxMessageSize
The maximum size, in bytes, of a message that can be sent through the port.

Reserved
Not used.

1996 Ch12 12/2/99 9:30 AM Page 258

Ports (Local Procedure Calls): ZwCreateWaitablePort 259

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
ZwCreatePort verifies that (MaxDataSize <= 0x104) and
(MaxMessageSize <= 0x148).

ZwCreateWaitablePort

ZwCreateWaitablePort creates a waitable port object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateWaitablePort(

OUT PHANDLE PortHandle,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN ULONG MaxDataSize,
IN ULONG MaxMessageSize,
IN ULONG Reserved
);

Parameters

PortHandle
Points to a variable that will receive the waitable port object handle if the call is
successful.

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_KERNEL_HANDLE,
OBJ_OPENLINK, OBJ_OPENIF, OBJ_EXCLUSIVE, OBJ_PERMANENT, and OBJ_INHERIT are not
valid attributes for a waitable port object.

MaxDataSize
The maximum size, in bytes, of data that can be sent through the port.

MaxMessageSize
The maximum size, in bytes, of a message that can be sent through the port.

Reserved
Not used.

Return Value
Returns STATUS_SUCCESS or an error status.

1996 Ch12 12/2/99 9:30 AM Page 259

Ports (Local Procedure Calls): ZwCreateWaitablePort260

Related Win32 Functions
None.

Remarks
ZwCreateWaitablePort verifies that (MaxDataSize <= 0x104) and
(MaxMessageSize <= 0x148).

Waitable ports can be connected to with ZwSecureConnectPort and messages can be
sent and received with ZwReplyWaitReceivePort or ZwReplyWaitReceivePortEx. The
other port functions cannot be used with waitable ports. Requests can only be sent to
waitable ports by kernel mode components calling the routines LpcRequestPort or
LpcRequestWaitReplyPort.

The routine ZwCreateWaitablePort is only present in Windows 2000.

ZwConnectPort

ZwConnectPort creates a port connected to a named port.
NTSYSAPI
NTSTATUS
NTAPI
ZwConnectPort(

OUT PHANDLE PortHandle,
IN PUNICODE_STRING PortName,
IN PSECURITY_QUALITY_OF_SERVICE SecurityQos,
IN OUT PPORT_SECTION_WRITE WriteSection OPTIONAL,
IN OUT PPORT_SECTION_READ ReadSection OPTIONAL,
OUT PULONG MaxMessageSize OPTIONAL,
IN OUT PVOID ConnectData OPTIONAL,
IN OUT PULONG ConnectDataLength OPTIONAL
);

Parameters

PortHandle
Points to a variable that will receive the port object handle if the call is successful.

PortName
Points to a structure that specifies the name of the port to connect to.

SecurityQos
Points to a structure that specifies the level of impersonation available to the port
listener.

WriteSection
Optionally points to a structure describing the shared memory region used to send
large amounts of data to the listener; if the call is successful, this will be updated.

1996 Ch12 12/2/99 9:30 AM Page 260

Ports (Local Procedure Calls): ZwSecureConnectPort 261

ReadSection
Optionally points to a caller-allocated buffer or variable that receives information on
the shared memory region used by the listener to send large amounts of data to the
caller.

MaxMessageSize
Optionally points to a variable that receives the size, in bytes, of the largest message
that can be sent through the port.

ConnectData
Optionally points to a caller-allocated buffer or variable that specifies connect data to
send to the listener, and receives connect data sent by the listener.

ConnectDataLength
Optionally points to a variable that specifies the size, in bytes, of the connect data to
send to the listener, and receives the size of the connect data sent by the listener.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_NOT_FOUND, STATUS_PORT_CONNECTION_REFUSED, or
STATUS_INVALID_PORT_HANDLE.

Related Win32 Functions
Example 12.1 demonstrates the connection establishment process.

Remarks
None.

ZwSecureConnectPort

ZwSecureConnectPort creates a port connected to a named port.
NTSYSAPI
NTSTATUS
NTAPI
ZwSecureConnectPort(

OUT PHANDLE PortHandle,
IN PUNICODE_STRING PortName,
IN PSECURITY_QUALITY_OF_SERVICE SecurityQos,
IN OUT PPORT_SECTION_WRITE WriteSection OPTIONAL,
IN PSID ServerSid OPTIONAL
IN OUT PPORT_SECTION_READ ReadSection OPTIONAL,
OUT PULONG MaxMessageSize OPTIONAL,
IN OUT PVOID ConnectData OPTIONAL,
IN OUT PULONG ConnectDataLength OPTIONAL
);

1996 Ch12 12/2/99 9:30 AM Page 261

Ports (Local Procedure Calls): ZwSecureConnectPort262

Parameters

PortHandle
Points to a variable that will receive the port object handle if the call is successful.

PortName
Points to a structure that specifies the name of the port to connect to.

SecurityQos
Points to a structure that specifies the level of impersonation available to the port
listener.

WriteSection
Optionally points to a structure describing the shared memory region used to send
large amounts of data to the listener; if the call is successful, this will be updated.

ServerSid
Optionally points to a structure that specifies the expected SID of the process listening
for the connection.

ReadSection
Optionally points to a caller-allocated buffer or variable that receives information on
the shared memory region used by the listener to send large amounts of data to the
caller.

MaxMessageSize
Optionally points to a variable that receives the size, in bytes, of the largest message
that can be sent through the port.

ConnectData
Optionally points to a caller-allocated buffer or variable that specifies connect data to
send to the listener, and receives connect data sent by the listener.

ConnectDataLength
Optionally points to a variable that specifies the size, in bytes, of the connect data to
send to the listener, and receives the size of the connect data sent by the listener.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_NOT_FOUND, STATUS_PORT_CONNECTION_REFUSED,
STATUS_INVALID_PORT_HANDLE, or STATUS_SERVER_SID_MISMATCH.

Related Win32 Functions
None.

1996 Ch12 12/2/99 9:30 AM Page 262

Ports (Local Procedure Calls): ZwAcceptConnectPort 263

)Remarks
The routine ZwSecureConnectPort is only present in Windows 2000.

The ServerSid parameter is used to ensure that the named port to which the connec-
tion will be made is being listened to by a process whose primary token identifies the
TokenUser as ServerSid.This prevents messages containing sensitive data from being
sent to an untrusted user who has managed somehow to usurp use of the port name.

ZwListenPort

ZwListenPort listens on a port for a connection request message.
NTSYSAPI
NTSTATUSNTAPI
ZwListenPort(

IN HANDLE PortHandle,
OUT PPORT_MESSAGE Message
);

Parameters

PortHandle
A handle to a port object.The handle need not grant any specific access.

Message
Points to a caller-allocated buffer or variable that receives the connect message sent to
the port.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
The message type of the received message is LPC_CONNECTION_REQUEST.The message
data is the connect data specified in the call to ZwConnectPort.

ZwAcceptConnectPort

ZwAcceptConnectPort accepts or rejects a connection request.
NTSYSAPI
NTSTATUS
NTAPI
ZwAcceptConnectPort(

OUT PHANDLE PortHandle,
IN ULONG PortIdentifier,
IN PPORT_MESSAGE Message,
IN BOOLEAN Accept,
IN OUT PPORT_SECTION_WRITE WriteSection OPTIONAL,
IN OUT PPORT_SECTION_READ ReadSection OPTIONAL
);

1996 Ch12 12/2/99 9:30 AM Page 263

Ports (Local Procedure Calls): ZwAcceptConnectPort264

Parameters

PortHandle
Points to a variable that will receive the port object handle if the call is successful.

PortIdentifier
A numeric identifier to be associated with the port.

Message
Points to a caller-allocated buffer or variable that identifies the connection request and
contains any connect data that should be returned to requestor of the connection.

Accept
Specifies whether the connection should be accepted or not.

WriteSection
Optionally points to a structure describing the shared memory region used to send
large amounts of data to the requestor; if the call is successful, this will be updated.

ReadSection
Optionally points to a caller-allocated buffer or variable that receives information on
the shared memory region used by the requestor to send large amounts of data to the
caller.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_REPLY_MESSAGE_MISMATCH.

Related Win32 Functions
None.

Remarks
None.

ZwCompleteConnectPort

ZwCompleteConnectPort completes the port connection process.
NTSYSAPI
NTSTATUS
NTAPI
ZwCompleteConnectPort(

IN HANDLE PortHandle
);

1996 Ch12 12/2/99 9:30 AM Page 264

Ports (Local Procedure Calls): ZwRequestPort 265

Parameters

PortHandle
A handle to a port object.The handle need not grant any specific access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE or
STATUS_INVALID_PORT_HANDLE.

Related Win32 Functions
None.

Remarks
None.

ZwRequestPort

ZwRequestPort sends a request message to a port.
NTSYSAPI
NTSTATUS
NTAPI
ZwRequestPort(

IN HANDLE PortHandle,
IN PPORT_MESSAGE RequestMessage
);

Parameters

PortHandle
A handle to a port object.The handle need not grant any specific access.

RequestMessage
Points to a caller-allocated buffer or variable that specifies the request message to send
to the port.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE or
STATUS_PORT_DISCONNECTED.

Related Win32 Functions
None.

Remarks
None.

1996 Ch12 12/2/99 9:30 AM Page 265

Ports (Local Procedure Calls): ZwRequestWaitReplyPort266

ZwRequestWaitReplyPort

ZwRequestWaitReplyPort sends a request message to a port and waits for a reply
message.
NTSYSAPI
NTSTATUS
NTAPI
ZwRequestWaitReplyPort(

IN HANDLE PortHandle,
IN PPORT_MESSAGE RequestMessage,
OUT PPORT_MESSAGE ReplyMessage
);

Parameters

PortHandle
A handle to a port object.The handle need not grant any specific access.

RequestMessage
Points to a caller-allocated buffer or variable that specifies the request message to send
to the port.

ReplyMessage
Points to a caller-allocated buffer or variable that receives the reply message sent to the
port.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE,
STATUS_PORT_DISCONNECTED, STATUS_THREAD_IS_TERMINATING, STATUS_REPLY_MES-
SAGE_MISMATCH or STATUS_LPC_REPLY_LOST.

Related Win32 Functions
None.

Remarks
None.

ZwReplyPort

ZwReplyPort sends a reply message to a port.
NTSYSAPI
NTSTATUS
NTAPI
ZwReplyPort(

IN HANDLE PortHandle,
IN PPORT_MESSAGE ReplyMessage
);

1996 Ch12 12/2/99 9:30 AM Page 266

Ports (Local Procedure Calls): ZwReplyWaitReplyPort 267

Parameters

PortHandle
A handle to a port object.The handle need not grant any specific access.

ReplyMessage
Points to a caller-allocated buffer or variable that specifies the reply message to send to
the port.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE or
STATUS_REPLY_MESSAGE_MISMATCH.

Related Win32 Functions
None.

Remarks
None.

ZwReplyWaitReplyPort

ZwReplyWaitReplyPort sends a reply message to a port and waits for a reply message.
NTSYSAPI
NTSTATUS
NTAPI
ZwReplyWaitReplyPort(

IN HANDLE PortHandle,
IN OUT PPORT_MESSAGE ReplyMessage
);

Parameters

PortHandle
A handle to a port object.The handle need not grant any specific access.

ReplyMessage
Points to a caller-allocated buffer or variable that specifies the reply message to send to
the port and receives the reply message sent to the port.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE or
STATUS_REPLY_MESSAGE_MISMATCH.

Related Win32 Functions
None.

1996 Ch12 12/2/99 9:30 AM Page 267

Ports (Local Procedure Calls): ZwReplyWaitReplyPort268

Remarks
None.

ZwReplyWaitReceivePort

ZwReplyWaitReceivePort optionally sends a reply message to a port and waits for a
message.
NTSYSAPI
NTSTATUS
NTAPI
ZwReplyWaitReceivePort(

IN HANDLE PortHandle,
OUT PULONG PortIdentifier OPTIONAL,
IN PPORT_MESSAGE ReplyMessage OPTIONAL,
OUT PPORT_MESSAGE Message
);

Parameters

PortHandle
A handle to either a port object or a waitable port object.The handle need not grant
any specific access.

PortIdentifier
Optionally points to a variable that receives a numeric identifier associated with the
port.

ReplyMessage
Optionally points to a caller-allocated buffer or variable that specifies the reply mes-
sage to send to the port.

Message
Points to a caller-allocated buffer or variable that receives the message sent to the port.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE or
STATUS_REPLY_MESSAGE_MISMATCH.

Related Win32 Functions
None.

Remarks
None.

1996 Ch12 12/2/99 9:30 AM Page 268

Ports (Local Procedure Calls): ZwReplyWaitReceivePortEx 269

ZwReplyWaitReceivePortEx

ZwReplyWaitReceivePortEx optionally sends a reply message to a port and waits for a
message.
NTSYSAPI
NTSTATUS
NTAPI
ZwReplyWaitReceivePortEx(

IN HANDLE PortHandle,
OUT PULONG PortIdentifier OPTIONAL,
IN PPORT_MESSAGE ReplyMessage OPTIONAL,
OUT PPORT_MESSAGE Message,
IN PLARGE_INTEGER Timeout
);

Parameters

PortHandle
A handle to either a port object or a waitable port object.The handle need not grant
any specific access.

PortIdentifier
Optionally points to a variable that receives a numeric identifier associated with the
port.

ReplyMessage
Optionally points to a caller-allocated buffer or variable that specifies the reply mes-
sage to send to the port.

Message
Points to a caller-allocated buffer or variable that receives the message sent to the port.

Timeout
Optionally points to a value that specifies the absolute or relative time at which the
wait is to be timed out.A negative value specifies an interval relative to the current
time.The value is expressed in units of 100 nanoseconds.Absolute times track any
changes in the system time; relative times are not affected by system time changes. If
Timeout is a null pointer, the wait will not timeout.

Return Value
Returns STATUS_SUCCESS, STATUS_TIMEOUT or an error status, such as
STATUS_INVALID_HANDLE or STATUS_REPLY_MESSAGE_MISMATCH.

Related Win32 Functions
None.

Remarks
The routine ZwReplyWaitReceivePortEx is only present in Windows 2000.

1996 Ch12 12/2/99 9:30 AM Page 269

Ports (Local Procedure Calls): ZwReadRequestData270

ZwReadRequestData

ZwReadRequestData reads the data from the process virtual address space referenced by
a message.
NTSYSAPI
NTSTATUS
NTAPI
ZwReadRequestData(

IN HANDLE PortHandle,
IN PPORT_MESSAGE Message,
IN ULONG Index,
OUT PVOID Buffer,
IN ULONG BufferLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

PortHandle
A handle to a port object.The handle need not grant any specific access.

Message
Points to a caller-allocated buffer or variable that contains a message received from the
port.

Index
An index into the array of buffer address/length pairs in the Message.

Buffer
Points to a caller-allocated buffer or variable that receives data transferred from the vir-
tual address space of the sender of the Message.

BufferLength
The size in bytes of Buffer.

ReturnLength
Optionally points to a variable that receives the number of bytes actually transferred if
the call was successful. If this information is not needed, ReturnLength may be a null
pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
The sender of the message should have initialized the VirtualRangesOffset member
of the PORT_MESSAGE structure and stored valid virtual address range information in the
data portion of the message.

1996 Ch12 12/2/99 9:30 AM Page 270

Ports (Local Procedure Calls): ZwWriteRequestData 271

ZwWriteRequestData

ZwWriteRequestData writes data to the process virtual address space referenced by a
message.
NTSYSAPI
NTSTATUS
NTAPI
ZwWriteRequestData(

IN HANDLE PortHandle,
IN PPORT_MESSAGE Message,
IN ULONG Index,
IN PVOID Buffer,
IN ULONG BufferLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

PortHandle
A handle to a port object.The handle need not grant any specific access.

Message
Points to a caller-allocated buffer or variable that contains a message sent to the port.

Index
An index into the array of buffer address/length pairs in the Message.

Buffer
Points to a caller-allocated buffer or variable that contains data to be transferred to the
virtual address space of the sender of the Message.

BufferLength
The size in bytes of Buffer.

ReturnLength
Optionally points to a variable that receives the number of bytes actually transferred if
the call was successful. If this information is not needed, ReturnLength may be a null
pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE.

Related Win32 Functions
None.

Remarks
The sender of the message should have initialized the VirtualRangesOffset member
of the PORT_MESSAGE structure and have stored valid virtual address range information
in the data portion of the message.

1996 Ch12 12/2/99 9:30 AM Page 271

Ports (Local Procedure Calls): ZwQueryInformationPort272

ZwQueryInformationPort

ZwQueryInformationPort retrieves information about a port object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryInformationPort(

IN HANDLE PortHandle,
IN PORT_INFORMATION_CLASS PortInformationClass,
OUT PVOID PortInformation,
IN ULONG PortInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

PortHandle
A handle to a port object.The handle must grant GENERIC_READ access.

PortInformationClass
Specifies the type of port object information to be queried.The permitted values are
drawn from the enumeration PORT_INFORMATION_CLASS, described in the following
section.

PortInformation
Points to a caller-allocated buffer or variable that receives the requested port object
information.

PortInformationLength
Specifies the size in bytes of PortInformation, which the caller should set according
to the given PortInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
PortInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE or
STATUS_INVALID_INFO_CLASS.

Related Win32 Functions
None.

Remarks
None.

1996 Ch12 12/2/99 9:30 AM Page 272

Ports (Local Procedure Calls): ZwImpersonateClientOfPort 273

PORT_INFORMATION_CLASS
typedef enum _PORT_INFORMATION_CLASS {

PortBasicInformation
} PORT_INFORMATION_CLASS;

PortBasicInformation
typedef struct _PORT_BASIC_INFORMATION {
} PORT_BASIC_INFORMATION, *PPORT_BASIC_INFORMATION;

Remarks
PORT_BASIC_INFORMATION does not have any members.

ZwImpersonateClientOfPort

ZwImpersonateClientOfPort impersonates the security context of the client of a port.
NTSYSAPI
NTSTATUS
NTAPI
ZwImpersonateClientOfPort(

IN HANDLE PortHandle,
IN PPORT_MESSAGE Message
);

Parameters

PortHandle
A handle to a port object.The handle need not grant any specific access.

Message
Points to a caller-allocated buffer or variable that contains a message sent by the client
of the port.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE,
STATUS_INVALID_PORT_HANDLE, or STATUS_PORT_DISCONNECTED.

Related Win32 Functions
None.

Remarks
None.

1996 Ch12 12/2/99 9:30 AM Page 273

Ports (Local Procedure Calls): Example 12.1274

Example 12.1: Connecting to a Named Port
#include “ntdll.h”
#include <stdlib.h>
#include <stdio.h>

template <int i> struct PORT_MESSAGEX : NT::PORT_MESSAGE {
UCHAR Data[i];

};

DWORD WINAPI client(PVOID)
{

NT::UNICODE_STRING name;
NT::RtlInitUnicodeString(&name, L”\\Test”);

HANDLE hSection = CreateFileMapping(HANDLE(0xFFFFFFFF), 0,
PAGE_READWRITE, 0, 0x50000, 0);

ULONG n, cd[] = {1, 2, 3, 4, 5}, cdn = sizeof cd;
NT::SECURITY_QUALITY_OF_SERVICE sqos

= {sizeof sqos, NT::SecurityImpersonation, TRUE, TRUE};
NT::PORT_SECTION_WRITE psw = {sizeof psw, hSection, 0x20000, 0x30000};
NT::PORT_SECTION_READ psr = {sizeof psr};
HANDLE hPort;

NT::ZwConnectPort(&hPort, &name, &sqos, &psw, &psr, &n, cd, &cdn);

PORT_MESSAGEX<40> req, rep;
CHAR txt[] = “Hello, World”;

memset(&req, 0xaa, sizeof req);
memset(&rep, 0xcc, sizeof req);

req.MessageType = NT::LPC_NEW_MESSAGE;
req.MessageSize = sizeof req;
req.VirtualRangesOffset = 0;
req.DataSize = sizeof txt;
strcpy(PSTR(req.Data), txt);

while (true) {
NT::ZwRequestWaitReplyPort(hPort, &req, &rep);

printf(“client(): type %hd, id %hu\n”,
rep.MessageType, rep.MessageId);

Sleep(1000);
}

return 0;
}

int main()
{

NT::UNICODE_STRING name;
NT::RtlInitUnicodeString(&name, L”\\Test”);

NT::OBJECT_ATTRIBUTES oa = {sizeof oa, 0, &name};
PORT_MESSAGEX<40> req;
HANDLE hPort;

memset(&req, 0xee, sizeof req);

1996 Ch12 12/2/99 9:30 AM Page 274

Ports (Local Procedure Calls): Example 12.1 275

NT::ZwCreatePort(&hPort, &oa, 0, sizeof req, 0);

ULONG tid;
HANDLE hThread = CreateThread(0, 0, client, 0, 0, &tid);

NT::ZwListenPort(hPort, &req);

ULONG n = 0x9000;
HANDLE hSection = CreateFileMapping(HANDLE(0xFFFFFFFF), 0,

PAGE_READWRITE, 0, n, 0);
NT::PORT_SECTION_WRITE psw = {sizeof psw, hSection, 0, n};
NT::PORT_SECTION_READ psr = {sizeof psr};
HANDLE hPort2;

req.DataSize = 4; req.Data[0] = 0xfe;

NT::ZwAcceptConnectPort(&hPort2, 0xdeadbabe, &req, TRUE, &psw, &psr);

NT::ZwCompleteConnectPort(hPort2);

while (true) {
ULONG portid;

NT::ZwReplyWaitReceivePort(hPort2, &portid, 0, &req);

printf(“server(): type %hd, id %hu\n”,
req.MessageType, req.MessageId);

req.DataSize = 1; req.Data[0] = 0xfd;

NT::ZwReplyPort(hPort2, &req);
}

return 0;
}

Example 12.1 is intended to be run under the control of a debugger so that the values
of variables can be examined at each step of the program; it does not do anything use-
ful and contains extraneous statements (such as the memset statements), which need
not appear in production code.

The important steps taken by the function main are as follows:

1. Create a named port by calling ZwCreatePort. The MaxDataSize parameter is
checked for consistency but is otherwise unused.Therefore a value of zero can be
specified.

2. Listen on the port for connection requests.A connect message includes the con-
nect data specified by the caller of ZwConnectPort. The connect data and the
identity of the process making the request can be used to decide whether to
accept or reject the connection request.

3. Update the data portion of the connection request message; these changes will be
visible to the caller of ZwConnectPort upon return from that function.

4. In anticipation of the need to transfer large amounts of data, create a pagefile-
backed section and associate with the port by calling ZwAcceptConnectPort.

5. Complete the connection by calling ZwCompleteConnectPort. This causes the
client’s call to ZwConnectPort to return.

1996 Ch12 12/2/99 9:30 AM Page 275

Ports (Local Procedure Calls): Example 12.1276

6. Loop, receiving requests, acting upon the contained data and replying.

The important steps taken by the function client are as follows:

1. In anticipation of the need to transfer large amounts of data, create a pagefile-
backed section.

2. Initialize the connect data, and connect to the named port by calling
ZwConnectPort. This call also associates the section with the port.

3. Initialize the PORT_MESSAGE structure that will carry the requests to the server.
The four fields that must be initialized are MessageType, MessageSize, DataSize,
and VirtualRangesOffset.

4. Loop, sending requests and receiving replies.

1996 Ch12 12/2/99 9:30 AM Page 276

13
Files

The system services described in this chapter create and manipulate file objects.

ZwCreateFile

ZwCreateFile creates or opens a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER AllocationSize OPTIONAL,
IN ULONG FileAttributes,
IN ULONG ShareAccess,
IN ULONG CreateDisposition,
IN ULONG CreateOptions,
IN PVOID EaBuffer OPTIONAL,
IN ULONG EaLength
);

Parameters

FileHandle
Points to a variable that will receive the file object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the file object.This parameter
can be zero, or any compatible combination of the following flags:

FILE_ANY_ACCESS 0x0000 // any type

FILE_READ_ACCESS 0x0001 // file & pipe
FILE_READ_DATA 0x0001 // file & pipe
FILE_LIST_DIRECTORY 0x0001 // directory

FILE_WRITE_ACCESS 0x0002 // file & pipe
FILE_WRITE_DATA 0x0002 // file & pipe
FILE_ADD_FILE 0x0002 // directory

1996 CH13 12/1/99 12:34 PM Page 277

Files: ZwCreateFile278

FILE_APPEND_DATA 0x0004 // file
FILE_ADD_SUBDIRECTORY 0x0004 // directory
FILE_CREATE_PIPE_INSTANCE 0x0004 // named pipe

FILE_READ_EA 0x0008 // file & directory

FILE_WRITE_EA 0x0010 // file & directory

FILE_EXECUTE 0x0020 // file
FILE_TRAVERSE 0x0020 // directory

FILE_DELETE_CHILD 0x0040 // directory

FILE_READ_ATTRIBUTES 0x0080 // all types

FILE_WRITE_ATTRIBUTES 0x0100 // all types

FILE_ALL_ACCESS // All of the preceding +
STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_PERMANENT, OBJ_EXCLUSIVE,
and OBJ_OPENLINK are not valid attributes for a file object.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation. On return, the Information member contains create disposition,
which will be one of the following values:

FILE_SUPERSEDED
FILE_OPENED
FILE_CREATED
FILE_OVERWRITTEN
FILE_EXISTS
FILE_DOES_NOT_EXIST

AllocationSize
Optionally specifies the initial allocation size in bytes for the file.A nonzero value has
no effect unless the file is being created, overwritten, or superseded.

FileAttributes
Specifies file attributes to be applied if a new file is created.This parameter can be
zero, or any compatible combination of the following flags:

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_SPARSE_FILE
FILE_ATTRIBUTE_REPARSE_POINT
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
FILE_ATTRIBUTE_ENCRYPTED

1996 CH13 12/1/99 12:34 PM Page 278

Files: ZwCreateFile 279

ShareAccess
Specifies the limitations on sharing of the file.This parameter can be zero, or any com-
patible combination of the following flags:

FILE_SHARE_READ
FILE_SHARE_WRITE
FILE_SHARE_DELETE

CreateDisposition
Specifies what to do, depending on whether the file already exists.This must be one of
the following values:

FILE_SUPERSEDE
FILE_OPEN
FILE_CREATE
FILE_OPEN_IF
FILE_OVERWRITE
FILE_OVERWRITE_IF

CreateOptions
Specifies the options to be applied when creating or opening the file, as a compatible
combination of the following flags:

FILE_DIRECTORY_FILE
FILE_WRITE_THROUGH
FILE_SEQUENTIAL_ONLY
FILE_NO_INTERMEDIATE_BUFFERING
FILE_SYNCHRONOUS_IO_ALERT
FILE_SYNCHRONOUS_IO_NONALERT
FILE_NON_DIRECTORY_FILE
FILE_CREATE_TREE_CONNECTION
FILE_COMPLETE_IF_OPLOCKED
FILE_NO_EA_KNOWLEDGE
FILE_OPEN_FOR_RECOVERY
FILE_RANDOM_ACCESS
FILE_DELETE_ON_CLOSE
FILE_OPEN_BY_FILE_ID
FILE_OPEN_FOR_BACKUP_INTENT
FILE_NO_COMPRESSION
FILE_RESERVE_OPFILTER
FILE_OPEN_REPARSE_POINT
FILE_OPEN_NO_RECALL
FILE_OPEN_FOR_FREE_SPACE_QUERY

EaBuffer
Points to a caller-allocated buffer or variable that contains Extended Attributes
information.

EaLength
Specifies the size in bytes of EaBuffer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_NOT_FOUND, STATUS_OBJECT_NAME_COLLISION,
STATUS_OBJECT_NAME_INVALID, STATUS_SHARING_VIOLATION, STATUS_NOT_A_DIRECTORY, or
STATUS_FILE_IS_A_DIRECTORY.

1996 CH13 12/1/99 12:34 PM Page 279

Files: ZwCreateFile280

Related Win32 Functions
CreateFile.

Remarks
ZwCreateFile is documented in the DDK.

The kernel mode Transport Driver Interface (TDI) uses extended attributes extensive-
ly, and extended attributes can be stored and retrieved on NTFS files.

Example 13.1 demonstrates how to use FILE_OPEN_BY_FILE_ID.

ZwOpenFile

ZwOpenFile opens a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG ShareAccess,
IN ULONG OpenOptions
);

Parameters

FileHandle
Points to a variable that will receive the file object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the file object.This parameter
can be zero, or any compatible combination of the following flags:

FILE_ANY_ACCESS 0x0000 // any type

FILE_READ_ACCESS 0x0001 // file & pipe
FILE_READ_DATA 0x0001 // file & pipe
FILE_LIST_DIRECTORY 0x0001 // directory

FILE_WRITE_ACCESS 0x0002 // file & pipe
FILE_WRITE_DATA 0x0002 // file & pipe
FILE_ADD_FILE 0x0002 // directory

FILE_APPEND_DATA 0x0004 // file
FILE_ADD_SUBDIRECTORY 0x0004 // directory
FILE_CREATE_PIPE_INSTANCE 0x0004 // named pipe

FILE_READ_EA 0x0008 // file & directory

FILE_WRITE_EA 0x0010 // file & directory

FILE_EXECUTE 0x0020 // file
FILE_TRAVERSE 0x0020 // directory

1996 CH13 12/1/99 12:34 PM Page 280

Files: ZwOpenFile 281

FILE_DELETE_CHILD 0x0040 // directory

FILE_READ_ATTRIBUTES 0x0080 // all types

FILE_WRITE_ATTRIBUTES 0x0100 // all types

FILE_ALL_ACCESS // All of the preceding + STANDARD_RIGHTS_ALL

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_PERMANENT, OBJ_EXCLUSIVE,
and OBJ_OPENLINK are not valid attributes for a file object.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation. If the call is successful, the Information member contains create
disposition, which will be one of the following values:

FILE_OPENED
FILE_DOES_NOT_EXIST

ShareAccess
Specifies the limitations on sharing of the file.This parameter can be zero, or any com-
patible combination of the following flags:

FILE_SHARE_READ
FILE_SHARE_WRITE
FILE_SHARE_DELETE

OpenOptions
Specifies the options to be applied when opening the file as a compatible combination
of the following flags:

FILE_DIRECTORY_FILE
FILE_WRITE_THROUGH
FILE_SEQUENTIAL_ONLY
FILE_NO_INTERMEDIATE_BUFFERING
FILE_SYNCHRONOUS_IO_ALERT
FILE_SYNCHRONOUS_IO_NONALERT
FILE_NON_DIRECTORY_FILE
FILE_CREATE_TREE_CONNECTION
FILE_COMPLETE_IF_OPLOCKED
FILE_NO_EA_KNOWLEDGE
FILE_OPEN_FOR_RECOVERY
FILE_RANDOM_ACCESS
FILE_DELETE_ON_CLOSE
FILE_OPEN_BY_FILE_ID
FILE_OPEN_FOR_BACKUP_INTENT
FILE_NO_COMPRESSION
FILE_RESERVE_OPFILTER
FILE_OPEN_REPARSE_POINT
FILE_OPEN_NO_RECALL
FILE_OPEN_FOR_FREE_SPACE_QUERY

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_NOT_FOUND, STATUS_OBJECT_NAME_INVALID,
STATUS_SHARING_VIOLATION, STATUS_NOT_A_DIRECTORY, or STATUS_FILE_IS_A_DIRECTORY.

1996 CH13 12/1/99 12:34 PM Page 281

Files: ZwOpenFile282

Related Win32 Functions
None.

Remarks
ZwOpenFile(FileHandle, DesiredAccess, ObjectAttributes, IoStatusBlock,

ShareAccess, OpenOptions)

is equivalent to:
ZwCreateFile(FileHandle, DesiredAccess, ObjectAttributes, IoStatusBlock, 0, 0,

ShareAccess, FILE_OPEN, OpenOptions, 0, 0)

ZwDeleteFile

ZwDeleteFile deletes a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwDeleteFile(

IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

ObjectAttributes
Specifies the file to delete.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
None.

Remarks
There are alternative methods of deleting a file, and the Win32 DeleteFile function
uses ZwSetInformationFile with a FileInformationClass of
FileDispositionInformation.

ZwFlushBuffersFile

ZwFlushBuffersFile flushes any cached data to the storage medium or network.
NTSYSAPI
NTSTATUS
NTAPI
ZwFlushBuffersFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

1996 CH13 12/1/99 12:34 PM Page 282

Files: ZwCancelIoFile 283

Parameters

FileHandle
A handle to a file object.The handle need not grant any specific access.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
FlushFileBuffers.

Remarks
If FileHandle refers to a file volume, all of the open files on the volume are flushed.

ZwCancelIoFile

ZwCancelIoFile cancels all pending I/O operations initiated by the current thread on
the file object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCancelIoFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters

FileHandle
A handle to a file object.The handle need not grant any specific access.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

1996 CH13 12/1/99 12:34 PM Page 283

Files: ZwCancelIoFile284

Related Win32 Functions
CancelIo.

Remarks
None.

ZwReadFile

ZwReadFile reads data from a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwReadFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_READ_DATA access.

Event
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation. On return, the Information member contains the number of
bytes actually read.

1996 CH13 12/1/99 12:34 PM Page 284

Files: ZwWriteFile 285

Buffer
Points to a caller-allocated buffer or variable that receives the data read from the file.

Length
Specifies the size in bytes of Buffer and the number of bytes to read from the file.

ByteOffset
Optionally points to a variable specifying the starting byte offset within the file at
which to begin the read operation.

Key
Optionally points to a variable that, if its value matches the key specified when the file
byte range was locked, allows the lock to be ignored.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, STATUS_FILE_LOCK_CONFLICT, or
STATUS_END_OF_FILE.

Related Win32 Functions
ReadFile, ReadFileEx.

Remarks
ZwReadFile is documented in the DDK.

ZwWriteFile

ZwWriteFile writes data to a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwWriteFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_WRITE_DATA and/or
FILE_APPEND_DATA access.

1996 CH13 12/1/99 12:34 PM Page 285

Files: ZwWriteFile286

Event
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation. On return, the Information member contains the number of
bytes actually written.

Buffer
Points to a caller-allocated buffer or variable that contains the data to write to the file.

Length
Specifies the size in bytes of Buffer and the number of bytes to write to the file.

ByteOffset
Optionally points to a variable specifying the starting byte offset within the file at
which to begin the write operation.

Key
Optionally points to a variable that, if its value matches the key specified when the file
byte range was locked, allows the lock to be ignored.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, or STATUS_FILE_LOCK_CONFLICT.

Related Win32 Functions
WriteFile, WriteFileEx.

Remarks
ZwWriteFile is documented in the DDK.

1996 CH13 12/1/99 12:34 PM Page 286

Files: ZwReadFileScatter 287

ZwReadFileScatter

ZwReadFileScatter reads data from a file and stores it in a number of discontiguous
buffers.
NTSYSAPI
NTSTATUS
NTAPI
ZwReadFileScatter(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PFILE_SEGMENT_ELEMENT Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_READ_DATA access.

Event
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation. On return, the Information member contains the number of
bytes actually read.

Buffer
Points to a caller-allocated buffer or variable that contains an array of
FILE_SEGMENT_ELEMENT pointers to buffers. Each buffer should be the size of a system
memory page and should be aligned on a system memory page size boundary.

Length
Specifies the number of bytes to read from the file.

1996 CH13 12/1/99 12:34 PM Page 287

Files: ZwReadFileScatter288

ByteOffset
Optionally points to a variable specifying the starting byte offset within the file at
which to begin the read operation.

Key
Optionally points to a variable that, if its value matches the key specified when the file
byte range was locked, allows the lock to be ignored.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, STATUS_FILE_LOCK_CONFLICT, or
STATUS_END_OF_FILE.

Related Win32 Functions
ReadFileScatter.

Remarks
None.

ZwWriteFileGather

ZwWriteFileGather retrieves data from a number of discontiguous buffers and writes it
to a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwWriteFileGather(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PFILE_SEGMENT_ELEMENT Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_WRITE_DATA and/or
FILE_APPEND_DATA access.

Event
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

1996 CH13 12/1/99 12:34 PM Page 288

Files: ZwWriteFileGather 289

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation. On return, the Information member contains the number of
bytes actually written.

Buffer
Points to a caller-allocated buffer or variable that contains an array of
FILE_SEGMENT_ELEMENT pointers to buffers. Each buffer should be the size of a system
memory page and should be aligned on a system memory page size boundary.

Length
Specifies the number of bytes to write to the file.

ByteOffset
Optionally points to a variable specifying the starting byte offset within the file at
which to begin the write operation.

Key
Optionally points to a variable that, if its value matches the key specified when the file
byte range was locked, allows the lock to be ignored.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, or STATUS_FILE_LOCK_CONFLICT.

Related Win32 Functions
WriteFileGather.

Remarks
None.

1996 CH13 12/1/99 12:34 PM Page 289

Files: ZwLockFile290

ZwLockFile

ZwLockFile locks a region of a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwLockFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PULARGE_INTEGER LockOffset,
IN PULARGE_INTEGER LockLength,
IN ULONG Key,
IN BOOLEAN FailImmediately,
IN BOOLEAN ExclusiveLock
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_READ_DATA and/or
FILE_WRITE_DATA access.

Event
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

LockOffset
Points to a variable that specifies the offset, in bytes, to the byte range to lock.

LockLength
Points to a variable that specifies the length, in bytes, of the byte range to lock.

1996 CH13 12/1/99 12:34 PM Page 290

Files: ZwUnlockFile 291

Key
Specifies a value that, if matched by the key specified in a call to ZwReadFile or
ZwWriteFile, allows the lock to be ignored.Also used to group locks.

FailImmediately
Specifies whether the attempt to lock a byte range should return with an error status
rather than wait if the lock cannot be acquired immediately.

ExclusiveLock
Specifies whether the lock should be exclusive or shared.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, or STATUS_LOCK_NOT_GRANTED.

Related Win32 Functions
LockFile, LockFileEx.

Remarks
None.

ZwUnlockFile

ZwUnlockFile unlocks a locked region of a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwUnlockFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PULARGE_INTEGER LockOffset,
IN PULARGE_INTEGER LockLength,
IN ULONG Key
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_READ_DATA and/or
FILE_WRITE_DATA access.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

LockOffset
Points to a variable that specifies the offset, in bytes, to the byte range to unlock.

1996 CH13 12/1/99 12:34 PM Page 291

Files: ZwUnlockFile292

LockLength
Points to a variable that specifies the length, in bytes, of the byte range to unlock.

Key
Specifies a value that identifies the lock.This should match the value specified when
the byte range was locked.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE or STATUS_RANGE_NOT_LOCKED.

Related Win32 Functions
UnlockFile, UnlockFileEx.

Remarks
None.

ZwDeviceIoControlFile

ZwDeviceIoControlFile performs an I/O control operation on a file object that repre-
sents a device.
NTSYSAPI
NTSTATUS
NTAPI
ZwDeviceIoControlFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG IoControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength
);

Parameters

FileHandle
A handle to a file object.The handle must grant access compatible with the access field
of the IoControlCode.

Event
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

1996 CH13 12/1/99 12:34 PM Page 292

Files: ZwDeviceIoControlFile 293

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

IoControlCode
Specifies the particular I/O control operation to perform.

InputBuffer
Optionally points to a caller-allocated buffer or variable that contains data specific to
the IoControlCode.

InputBufferLength
The size, in bytes, of InputBuffer.

OutputBuffer
Optionally points to a caller-allocated buffer or variable that receives data specific to
the IoControlCode.

OutputBufferLength
The size, in bytes, of OutputBuffer.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, or STATUS_INVALID_DEVICE_REQUEST.

Related Win32 Functions
DeviceIoControl.

Remarks
None.

1996 CH13 12/1/99 12:34 PM Page 293

Files: ZwFsControlFile294

ZwFsControlFile

ZwFsControlFile performs a file system control operation on a file object that repre-
sents a file-structured device.
NTSYSAPI
NTSTATUS
NTAPI
ZwFsControlFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG FsControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength
);

Parameters

FileHandle
A handle to a file object.The handle must grant access compatible with the access field
of the FsControlCode.

Event
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

FsControlCode
Specifies the particular file system control operation to perform.

InputBuffer
Optionally points to a caller-allocated buffer or variable that contains data specific to
the FsControlCode.

1996 CH13 12/1/99 12:34 PM Page 294

Files: ZwNotifyChangeDirectoryFile 295

InputBufferLength
The size, in bytes, of InputBuffer.

OutputBuffer
Optionally points to a caller-allocated buffer or variable that receives data specific to
the FsControlCode.

OutputBufferLength
The size, in bytes, of OutputBuffer.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, or STATUS_INVALID_DEVICE_REQUEST.

Related Win32 Functions
DeviceIoControl.

Remarks
The control codes and data structures for many interesting file system control opera-
tions are defined in winioctl.h.

ZwNotifyChangeDirectoryFile

ZwNotifyChangeDirectoryFile monitors a directory for changes.
ZwNotifyChangeDirectoryFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PFILE_NOTIFY_INFORMATION Buffer,
IN ULONG BufferLength,
IN ULONG NotifyFilter,
IN BOOLEAN WatchSubtree
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_LIST_DIRECTORY access.

Event
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

1996 CH13 12/1/99 12:34 PM Page 295

Files: ZwNotifyChangeDirectoryFile296

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

Buffer
Points to a caller-allocated buffer or variable that receives data describing the changes
detected.The data is a sequence of FILE_NOTIFY_INFORMATION structures.

BufferLength
The size, in bytes, of Buffer.

NotifyFilter
Specifies the types of changes to be monitored.This parameter can be any combina-
tion of the following flags:

FILE_NOTIFY_CHANGE_FILE_NAME
FILE_NOTIFY_CHANGE_DIR_NAME
FILE_NOTIFY_CHANGE_ATTRIBUTES
FILE_NOTIFY_CHANGE_SIZE
FILE_NOTIFY_CHANGE_LAST_WRITE
FILE_NOTIFY_CHANGE_LAST_ACCESS
FILE_NOTIFY_CHANGE_CREATION
FILE_NOTIFY_CHANGE_EA
FILE_NOTIFY_CHANGE_SECURITY
FILE_NOTIFY_CHANGE_STREAM_NAME
FILE_NOTIFY_CHANGE_STREAM_SIZE
FILE_NOTIFY_CHANGE_STREAM_WRITE

WatchSubtree
Specifies whether changes to all the directories in the subtree below FileHandle should
also be monitored.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING or an error status, such as
STATUS_ACCESS_DENIED or STATUS_INVALID_HANDLE.

1996 CH13 12/1/99 12:34 PM Page 296

Files: FILE_NOTIFY_INFORMATION 297

Related Win32 Functions
ReadDirectoryChangesW, FindFirstChangeNotification, FindNextChangeNotification.

Remarks
Although more FILTER_NOTIFY_XXX flags are defined than are listed in the Win32 docu-
mentation for ReadDirectoryChangesW, the supported file systems do not implement
the corresponding functionality.

FILE_NOTIFY_INFORMATION
typedef struct _FILE_NOTIFY_INFORMATION {

ULONG NextEntryOffset;
ULONG Action;
ULONG NameLength;
ULONG Name[1];

} FILE_NOTIFY_INFORMATION, *PFILE_NOTIFY_INFORMATION;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next record.A value of zero
indicates that this is the last record.

Action
The type of change that occurred. Possible values are:

FILE_ACTION_ADDED
FILE_ACTION_REMOVED
FILE_ACTION_MODIFIED
FILE_ACTION_RENAMED_OLD_NAME
FILE_ACTION_RENAMED_NEW_NAME
FILE_ACTION_ADDED_STREAM
FILE_ACTION_REMOVED_STREAM
FILE_ACTION_MODIFIED_STREAM

NameLength
Specifies the size, in bytes, of Name.

Name
Contains the name of the file or stream that changed.

Remarks
None.

1996 CH13 12/1/99 12:34 PM Page 297

Files: ZwQueryEaFile298

ZwQueryEaFile

ZwQueryEaFile retrieves information about the extended attributes of a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryEaFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PFILE_FULL_EA_INFORMATION Buffer,
IN ULONG BufferLength,
IN BOOLEAN ReturnSingleEntry,
IN PFILE_GET_EA_INFORMATION EaList OPTIONAL,
IN ULONG EaListLength,
IN PULONG EaIndex OPTIONAL,
IN BOOLEAN RestartScan
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_READ_EA access.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

Buffer
Points to a caller-allocated buffer or variable that receives the extended attributes.The
data is a sequence of FILE_FULL_EA_INFORMATION structures.

BufferLength
The size, in bytes, of Buffer.

ReturnSingleEntry
Specifies whether a single entry should be returned. If false, as many entries as will fit
in the buffer are returned.

EaList
Optionally points to a caller-allocated buffer or variable that contains a sequence of
FILE_GET_EA_INFORMATION structures specifying the names of the extended attributes to
query.

EaListLength
The size, in bytes, of EaList.

EaIndex
Optionally points to a variable that specifies the index of the extended attribute to
query.

RestartScan
Specifies whether the scan of the extended attributes should be restarted.

1996 CH13 12/1/99 12:34 PM Page 298

Files: ZwSetEaFile 299

Return Value
Returns STATUS_SUCCESS, STATUS_NO_MORE_ENTRIES or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, or STATUS_EA_LIST_INCONSISTENT.

Related Win32 Functions
None.

Remarks
NTFS supports extended attributes.

ZwSetEaFile

ZwSetEaFile sets the extended attributes of a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetEaFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PFILE_FULL_EA_INFORMATION Buffer,
IN ULONG BufferLength
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_WRITE_EA access.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

Buffer
Points to a caller-allocated buffer or variable that specifies the extended attributes. The
data is a sequence of FILE_FULL_EA_INFORMATION structures.

BufferLength
The size, in bytes, of Buffer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_EA_NAME, or STATUS_INVALID_EA_FLAG.

Related Win32 Functions
None.

Remarks
None.

1996 CH13 12/1/99 12:34 PM Page 299

Files: FILE_FULL_EA_INFORMATION300

FILE_FULL_EA_INFORMATION
typedef struct _FILE_FULL_EA_INFORMATION {

ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;
CHAR EaName[1];

// UCHAR EaData[]; // Variable length data not declared}
FILE_FULL_EA_INFORMATION,
*PFILE_FULL_EA_INFORMATION;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.A value of zero
indicates that this is the last entry.

Flags
A bit array of flags qualifying the extended attribute.

EaNameLength
The size in bytes of the extended attribute name.

EaValueLength
The size in bytes of the extended attribute value.

EaName
The extended attribute name.

EaData
The extended attribute data.The data follows the variable length EaName and is located
by adding EaNameLength + 1 to the address of the EaName member.

Remarks
FILE_FULL_EA_INFORMATION is documented in the DDK.

FILE_GET_EA_INFORMATION
typedef struct _FILE_GET_EA_INFORMATION {

ULONG NextEntryOffset;
UCHAR EaNameLength;
CHAR EaName[1];

} FILE_GET_EA_INFORMATION, *PFILE_GET_EA_INFORMATION;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.A value of zero
indicates that this is the last entry.

1996 CH13 12/1/99 12:34 PM Page 300

Files: ZwCreateNamedPipeFile 301

EaNameLength
The size in bytes of the extended attribute name.

EaName
The extended attribute name.

Remarks
None.

ZwCreateNamedPipeFile

ZwCreateNamedPipeFile creates a named pipe.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateNamedPipeFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG ShareAccess,
IN ULONG CreateDisposition,
IN ULONG CreateOptions,
IN BOOLEAN TypeMessage,
IN BOOLEAN ReadmodeMessage,
IN BOOLEAN Nonblocking,
IN ULONG MaxInstances,
IN ULONG InBufferSize,
IN ULONG OutBufferSize,
IN PLARGE_INTEGER DefaultTimeout OPTIONAL
);

Parameters

FileHandle
Points to a variable that will receive the file object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the file object.This parameter
can be zero, or any compatible combination of the following flags:

FILE_ANY_ACCESS 0x0000 // any type

FILE_READ_ACCESS 0x0001 // file & pipe
FILE_READ_DATA 0x0001 // file & pipe

FILE_WRITE_ACCESS 0x0002 // file & pipe
FILE_WRITE_DATA 0x0002 // file & pipe

FILE_CREATE_PIPE_INSTANCE 0x0004 // named pipe

FILE_READ_ATTRIBUTES 0x0080 // all types

FILE_WRITE_ATTRIBUTES 0x0100 // all types

FILE_ALL_ACCESS // All of the preceding +
STANDARD_RIGHTS_ALL

1996 CH13 12/1/99 12:34 PM Page 301

Files: ZwCreateNamedPipeFile302

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_PERMANENT, OBJ_EXCLUSIVE,
and OBJ_OPENLINK are not valid attributes for a file object.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

ShareAccess
Specifies the limitations on sharing of the file.This parameter can be zero, or any com-
patible combination of the following flags:

FILE_SHARE_READ
FILE_SHARE_WRITE

CreateDisposition
Specifies what to do, depending on whether the file already exists.This must be one of
the following values:

FILE_OPEN
FILE_CREATE
FILE_OPEN_IF

CreateOptions
Specifies the options to be applied when creating or opening the file, as a compatible
combination of the following flags:

FILE_WRITE_THROUGH
FILE_SYNCHRONOUS_IO_ALERT
FILE_SYNCHRONOUS_IO_NONALERT

TypeMessage
Specifies whether the data written to the pipe is interpreted as a sequence of messages
or as a stream of bytes.

ReadmodeMessage
Specifies whether the data read from the pipe is interpreted as a sequence of messages
or as a stream of bytes.

Nonblocking
Specifies whether non-blocking mode is enabled.

MaxInstances
Specifies the maximum number of instances that can be created for this pipe.

InBufferSize
Specifies the number of bytes to reserve for the input buffer.This value is advisory
only.

OutBufferSize
Specifies the number of bytes to reserve for the output buffer.This value is advisory
only.

1996 CH13 12/1/99 12:34 PM Page 302

Files: ZwCreateMailslotFile 303

DefaultTimeout
Optionally points to a variable that specifies the default timeout value in units of 100-
nanoseconds.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
CreateNamedPipe.

Remarks
None.

ZwCreateMailslotFile

ZwCreateMailslotFile creates a mailslot.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateMailslotFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG CreateOptions,
IN ULONG InBufferSize,
IN ULONG MaxMessageSize,
IN PLARGE_INTEGER ReadTimeout OPTIONAL
);

Parameters

FileHandle
Points to a variable that will receive the file object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the file object.This parameter
can be zero, or any compatible combination of the following flags:

FILE_ANY_ACCESS 0x0000 // any type

FILE_READ_ACCESS 0x0001 // file & pipe
FILE_READ_DATA 0x0001 // file & pipe

FILE_WRITE_ACCESS 0x0002 // file & pipe
FILE_WRITE_DATA 0x0002 // file & pipe

FILE_READ_ATTRIBUTES 0x0080 // all types

FILE_WRITE_ATTRIBUTES 0x0100 // all types

FILE_ALL_ACCESS // All of the preceding +
STANDARD_RIGHTS_ALL

1996 CH13 12/1/99 12:34 PM Page 303

Files: ZwCreateMailslotFile304

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_PERMANENT, OBJ_EXCLUSIVE,
and OBJ_OPENLINK are not valid attributes for a file object.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

CreateOptions
Specifies the options to be applied when creating or opening the file, as a compatible
combination of the following flags:

FILE_SYNCHRONOUS_IO_ALERT
FILE_SYNCHRONOUS_IO_NONALERT

InBufferSize
Specifies the number of bytes to reserve for the input buffer.This value is advisory
only.

MaxMessageSize
Specifies the maximum size, in bytes, of a single message that can be written to the
mailslot.

ReadTimeout
Optionally points to a variable that specifies the read timeout value in units of 100-
nanoseconds.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
CreateMailslot.

Remarks
None.

ZwQueryVolumeInformationFile

ZwQueryVolumeInformationFile retrieves information about a file system volume.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryVolumeInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID VolumeInformation,
IN ULONG VolumeInformationLength,
IN FS_INFORMATION_CLASS VolumeInformationClass
);

1996 CH13 12/1/99 12:34 PM Page 304

Files: ZwSetVolumeInformationFile 305

Parameters

FileHandle
A handle to a file object representing a volume.The handle must grant FILE_READ_DATA
access for most information classes.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

VolumeInformation
Points to a caller-allocated buffer or variable that receives the requested volume
information.

VolumeInformationLength
The size in bytes of VolumeInformation, which the caller should set according to the
given VolumeInformationClass.

VolumeInformationClass
Specifies the type of volume information to be queried.The permitted values are a
subset of the enumeration FS_INFORMATION_CLASS, described in the following section.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
GetVolumeInformation, GetDiskFreeSpace, GetDiskFreeSpaceEx, GetDriveType.

Remarks
None.

ZwSetVolumeInformationFile

ZwSetVolumeInformationFile sets information affecting a file system volume.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetVolumeInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID Buffer,
IN ULONG BufferLength,
IN FS_INFORMATION_CLASS VolumeInformationClass
);

1996 CH13 12/1/99 12:34 PM Page 305

Files: ZwSetVolumeInformationFile306

Parameters

FileHandle
A handle to a file object representing a volume.The handle must grant
FILE_WRITE_DATA access.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

VolumeInformation
Points to a caller-allocated buffer or variable that contains the volume information to
be set.

VolumeInformationLength
Specifies the size in bytes of VolumeInformation, which the caller should set according
to the given VolumeInformationClass.

VolumeInformationClass
Specifies the type of volume information to be set.The permitted values are a subset
of the enumeration FS_INFORMATION_CLASS, described in the following section.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
SetVolumeLabel.

Remarks
None.

FS_INFORMATION_CLASS
Query Set

typedef enum _FSINFOCLASS {
FileFsVolumeInformation = 1, // 1 Y N
FileFsLabelInformation, // 2 N Y
FileFsSizeInformation, // 3 Y N
FileFsDeviceInformation, // 4 Y N
FileFsAttributeInformation, // 5 Y N
FileFsControlInformation, // 6 Y Y
FileFsFullSizeInformation, // 7 Y N
FileFsObjectIdInformation // 8 Y Y

} FS_INFORMATION_CLASS, *PFS_INFORMATION_CLASS;

1996 CH13 12/1/99 12:34 PM Page 306

Files: FileFsLabelInformation 307

FileFsVolumeInformation
typedef struct _FILE_FS_VOLUME_INFORMATION {

LARGE_INTEGER VolumeCreationTime;
ULONG VolumeSerialNumber;
ULONG VolumeLabelLength;
UCHAR Unknown;
WCHAR VolumeLabel[1];

} FILE_FS_VOLUME_INFORMATION, *PFILE_FS_VOLUME_INFORMATION;

Members

VolumeCreationTime
The time when the volume was formatted in the standard time format (that is, the
number of 100-nanosecond intervals since January 1, 1601).

VolumeSerialNumber
The volume serial number.

VolumeLabelLength
The size, in bytes, of the volume label.

Unknown
Interpretation unknown.

VolumeLabel
The volume label.

Remarks
None.

FileFsLabelInformation
typedef struct _FILE_FS_LABEL_INFORMATION {

ULONG VolumeLabelLength;
WCHAR VolumeLabel;

} FILE_FS_LABEL_INFORMATION, *PFILE_FS_LABEL_INFORMATION;

Members

VolumeLabelLength
The size, in bytes, of the volume label.

VolumeLabel
The volume label.

Remarks
None.

1996 CH13 12/1/99 12:34 PM Page 307

Files: FileFsSizeInformation308

FileFsSizeInformation
typedef struct _FILE_FS_SIZE_INFORMATION {

LARGE_INTEGER TotalAllocationUnits;
LARGE_INTEGER AvailableAllocationUnits;
ULONG SectorsPerAllocationUnit;
ULONG BytesPerSector;

} FILE_FS_SIZE_INFORMATION, *PFILE_FS_SIZE_INFORMATION;

Members

TotalAllocationUnits
The total number of allocation units on the volume.

AvailableAllocationUnits
The number of free allocation units on the volume.

SectorsPerAllocationUnit
The number of sectors per allocation unit.

BytesPerSector
The number of bytes per sector.

Remarks
None.

FileFsDeviceInformation
typedef struct _FILE_FS_DEVICE_INFORMATION {

DEVICE_TYPE DeviceType;
ULONG Characteristics;

} FILE_FS_DEVICE_INFORMATION, *PFILE_FS_DEVICE_INFORMATION;

Members

DeviceType
The type of device on which the volume is stored. Possible values include:

FILE_DEVICE_CD_ROM
FILE_DEVICE_DFS
FILE_DEVICE_DISK
FILE_DEVICE_NETWORK_FILE_SYSTEM
FILE_DEVICE_VIRTUAL_DISK

Characteristics
A bit array of flags describing characteristics of the volume.The defined characteristics
include:

FILE_REMOVABLE_MEDIA
FILE_READ_ONLY_DEVICE
FILE_FLOPPY_DISKETTE
FILE_WRITE_ONCE_MEDIA
FILE_REMOTE_DEVICE

1996 CH13 12/1/99 12:34 PM Page 308

Files: FileFsAttributeInformation 309

FILE_DEVICE_IS_MOUNTED
FILE_VIRTUAL_VOLUME
FILE_AUTOGENERATED_DEVICE_NAME

Remarks
FILE_FS_DEVICE_INFORMATION is documented in the DDK.

FileFsAttributeInformation
typedef struct _FILE_FS_ATTRIBUTE_INFORMATION {

ULONG FileSystemFlags;
ULONG MaximumComponentNameLength;
ULONG FileSystemNameLength;
WCHAR FileSystemName[1];

} FILE_FS_ATTRIBUTE_INFORMATION, *PFILE_FS_ATTRIBUTE_INFORMATION;

Members

FileSystemFlags
A bit array of flags describing properties of the file system.The defined properties
include:

FILE_CASE_SENSITIVE_SEARCH
FILE_CASE_PRESERVED_NAMES
FILE_UNICODE_ON_DISK
FILE_PERSISTENT_ACLS
FILE_FILE_COMPRESSION
FILE_VOLUME_QUOTAS
FILE_SUPPORTS_SPARSE_FILES
FILE_SUPPORTS_REPARSE_POINTS
FILE_SUPPORTS_REMOTE_STORAGE
FILE_VOLUME_IS_COMPRESSED
FILE_SUPPORTS_OBJECT_IDS
FILE_SUPPORTS_ENCRYPTION
FILE_NAMED_STREAMS

MaximumComponentNameLength
The maximum number of characters in a component of a filename.

FileSystemNameLength
The size, in bytes, of the file system name.

FileSystemName
The file system name.

Remarks
None.

1996 CH13 12/1/99 12:34 PM Page 309

Files: FileFsControlInformation310

FileFsControlInformation
typedef struct _FILE_FS_CONTROL_INFORMATION {

LARGE_INTEGER Reserved[3];
LARGE_INTEGER DefaultQuotaThreshold;
LARGE_INTEGER DefaultQuotaLimit;
ULONG QuotaFlags;

} FILE_FS_CONTROL_INFORMATION, *PFILE_FS_CONTROL_INFORMATION;

Members

DefaultQuotaThreshold
The default number of bytes of disk space that may be used by a SID before a warning
is issued.

DefaultQuotaLimit
The default number of bytes of disk space that may be used by a SID.

QuotaFlags
An array of flags indicating whether disk quotas are enabled on the volume and the
actions to take when warning levels and quotas are exceeded.

Remarks
This information class can only be used in Windows 2000.

FileFsFullSizeInformation
typedef struct _FILE_FS_FULL_SIZE_INFORMATION {

LARGE_INTEGER TotalQuotaAllocationUnits;
LARGE_INTEGER AvailableQuotaAllocationUnits;
LARGE_INTEGER AvailableAllocationUnits;
ULONG SectorsPerAllocationUnit;
ULONG BytesPerSector;

} FILE_FS_FULL_SIZE_INFORMATION, *PFILE_FS_FULL_SIZE_INFORMATION;

Members

TotalQuotaAllocationUnits
The largest number of allocation units on the volume that could be owned by the
TokenOwner of the primary token of the current process. If volume quotas are enabled,
this is the smaller of the total number of allocation units on the volume and the vol-
ume quota for the TokenOwner of the primary token of the current process.

AvailableQuotaAllocationUnits
The number of free allocation units on the volume that could be acquired by the
TokenOwner of the primary token of the current process. If volume quotas are enabled,
this is the smaller of the total number of free allocation units on the volume and the
unused volume quota for the TokenOwner of the primary token of the current process.

1996 CH13 12/1/99 12:34 PM Page 310

Files: ZwQueryQuotaInformationFile 311

AvailableAllocationUnits
The number of free allocation units on the volume.

SectorsPerAllocationUnit
The number of sectors per allocation unit.

BytesPerSector
The number of bytes per sector.

Remarks
This information class can only be used in Windows 2000.

FileFsObjectIdInformation
typedef struct _FILE_FS_OBJECT_ID_INFORMATION {

UUID VolumeObjectId;
ULONG VolumeObjectIdExtendedInfo[12];

} FILE_FS_OBJECT_ID_INFORMATION, *PFILE_FS_OBJECT_ID_INFORMATION;

Members

VolumeObjectId
The UUID of the volume.

VolumeObjectIdExtendedInfo
Interpretation unknown.

Remarks
This information class can only be used in Windows 2000.

ZwQueryQuotaInformationFile

ZwQueryQuotaInformationFile retrieves information about the disk quotas on a
volume.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryQuotaInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PFILE_USER_QUOTA_INFORMATION Buffer,
IN ULONG BufferLength,
IN BOOLEAN ReturnSingleEntry,
IN PFILE_QUOTA_LIST_INFORMATION QuotaList OPTIONAL,
IN ULONG QuotaListLength,
IN PSID ResumeSid OPTIONAL,
IN BOOLEAN RestartScan
);

1996 CH13 12/1/99 12:34 PM Page 311

Files: ZwQueryQuotaInformationFile312

Parameters

FileHandle
A handle to a file object representing a volume.The handle must grant FILE_READ_DATA
access.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

Buffer
Points to a caller-allocated buffer or variable that receives the quota information.The
data is a sequence of FILE_USER_QUOTA_INFORMATION structures.

BufferLength
The size, in bytes, of Buffer.

ReturnSingleEntry
Specifies whether a single entry should be returned; if false, as many entries as will fit
in the buffer are returned.

QuotaList
Optionally points to a caller-allocated buffer or variable that contains a sequence of
FILE_QUOTA_LIST_INFORMATION structures specifying the SIDs to query.

QuotaListLength
The size, in bytes, of QuotaList.

ResumeSid
Optionally points to a variable which specifies the position from which the scan of
volume disk quotas should be resumed.

RestartScan
Specifies whether the scan of the volume disk quotas should be restarted.

Return Value
Returns STATUS_SUCCESS, STATUS_NO_MORE_ENTRIES or an error status, such as
STATUS_ACCESS_DENIED, STATUS_INVALID_HANDLE, or STATUS_QUOTA_LIST_INCONSISTENT.

Related Win32 Functions
None.

Remarks
The routine ZwQueryQuotaInformationFile is only present in Windows 2000.

NTFS supports disk quotas.

1996 CH13 12/1/99 12:34 PM Page 312

Files: FILE_USER_QUOTA_INFORMATION 313

ZwSetQuotaInformationFile

ZwSetQuotaInformationFile sets disk quota restrictions on a volume.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetQuotaInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PFILE_USER_QUOTA_INFORMATION Buffer,
IN ULONG BufferLength
);

Parameters

FileHandle
A handle to a file object representing a volume.The handle must grant
FILE_WRITE_DATA access.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

Buffer
Points to a caller-allocated buffer or variable that specifies the extended attributes. The
data is a sequence of FILE_USER_QUOTA_INFORMATION structures.

BufferLength
The size, in bytes, of Buffer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, or STATUS_QUOTA_LIST_INCONSISTENT.

Related Win32 Functions
None.

Remarks
The routine ZwSetQuotaInformationFile is only present in Windows 2000.

NTFS supports disk quotas.

FILE_USER_QUOTA_INFORMATION
typedef struct _FILE_USER_QUOTA_INFORMATION {

ULONG NextEntryOffset;
ULONG SidLength;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER QuotaUsed;
LARGE_INTEGER QuotaThreshold;
LARGE_INTEGER QuotaLimit;
SID Sid[1];

} FILE_USER_QUOTA_INFORMATION, *PFILE_USER_QUOTA_INFORMATION;

1996 CH13 12/1/99 12:34 PM Page 313

Files: FILE_USER_QUOTA_INFORMATION314

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.A value of zero
indicates that this is the last entry.

SidLength
The size in bytes of Sid.

ChangeTime
The time when the quota was last changed in the standard time format (that is, the
number of 100-nanosecond intervals since January 1, 1601).

QuotaUsed
The number of bytes of disk space used by files owned by Sid.

QuotaThreshold
The number of bytes of disk space that Sid may use before a warning is issued.

QuotaLimit
The number of bytes of disk space that Sid may use.

Sid
A SID that identifies a potential owner of files on a volume.

Remarks
None.

FILE_QUOTA_LIST_INFORMATION
typedef struct _FILE_QUOTA_LIST_INFORMATION {

ULONG NextEntryOffset;
ULONG SidLength;
SID Sid[1];

} FILE_QUOTA_LIST_INFORMATION, *PFILE_QUOTA_LIST_INFORMATION;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.A value of zero
indicates that this is the last entry.

SidLength
The size in bytes of Sid.

Sid
A SID that identifies a potential owner of files on a volume.

Remarks
None.

1996 CH13 12/1/99 12:34 PM Page 314

Files: ZwQueryFullAttributesFile 315

ZwQueryAttributesFile

ZwQueryAttributesFile retrieves basic information about a file object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryAttributesFile(

IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PFILE_BASIC_INFORMATION FileInformation
);

Parameters

ObjectAttributes
Specifies the file whose attributes are to be queried.

FileInformation
Points to a caller-allocated buffer or variable that receives the file attributes.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
GetFileAttributes.

Remarks
None.

ZwQueryFullAttributesFile

ZwQueryFullAttributesFile retrieves extended information about a file object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryFullAttributesFile(

IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PFILE_NETWORK_OPEN_INFORMATION FileInformation
);

Parameters

ObjectAttributes
Specifies the file whose attributes are to be queried.

FileInformation
Points to a caller-allocated buffer or variable that receives the file attributes.

1996 CH13 12/1/99 12:34 PM Page 315

Files: ZwQueryFullAttributesFile316

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
GetFileAttributesEx.

Remarks
None.

ZwQueryInformationFile

ZwQueryInformationFile retrieves information about a file object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FileInformation,
IN ULONG FileInformationLength,
IN FILE_INFORMATION_CLASS FileInformationClass
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_READ_DATA or FILE_READ_EA
access for some information classes.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

FileInformation
Points to a caller-allocated buffer or variable that receives the requested file
information.

FileInformationLength
The size in bytes of FileInformation, which the caller should set according to the
given FileInformationClass.

FileInformationClass
Specifies the type of file information to be queried.The permitted values are a subset
of the enumeration FILE_INFORMATION_CLASS, described in the following section.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

1996 CH13 12/1/99 12:34 PM Page 316

Files: ZwSetInformationFile 317

Related Win32 Functions
GetFileInformationByHandle, GetFileSize, GetCompressedFileSize, GetFileTime.

Remarks
ZwQueryInformationFile is documented in the DDK.

ZwSetInformationFile

ZwSetInformationFile sets information affecting a file object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID FileInformation,
IN ULONG FileInformationLength,
IN FILE_INFORMATION_CLASS FileInformationClass
);

Parameters

FileHandle
A handle to a file object.The handle must grant FILE_WRITE_DATA, FILE_WRITE_EA,
FILE_WRITE_ATTRIBUTES, or DELETE access for some information classes.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

FileInformation
Points to a caller-allocated buffer or variable that contains the file information to
be set.

FileInformationLength
The size in bytes of FileInformation, which the caller should set according to the
given FileInformationClass.

FileInformationClass
Specifies the type of file information to be set.The permitted values are a subset of the
enumeration FILE_INFORMATION_CLASS, described in the following section.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
SetFileAttributes, SetEndOfFile, SetFilePointer, SetFileTime, DeleteFile.

1996 CH13 12/1/99 12:34 PM Page 317

Files: ZwSetInformationFile318

Remarks
ZwSetInformationFile is documented in the DDK.

ZwQueryDirectoryFile

ZwQueryDirectoryFile retrieves information about the contents of a directory.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryDirectoryFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FileInformation,
IN ULONG FileInformationLength,
IN FILE_INFORMATION_CLASS FileInformationClass,
IN BOOLEAN ReturnSingleEntry,
IN PUNICODE_STRING FileName OPTIONAL,
IN BOOLEAN RestartScan
);

Parameters

FileHandle
A handle to a file object representing a directory.The handle must grant
FILE_LIST_DIRECTORY access.

Event
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

FileInformation
Points to a caller-allocated buffer or variable that receives the requested file
information.

1996 CH13 12/1/99 12:34 PM Page 318

Files: ZwQueryOleDirectoryFile 319

FileInformationLength
The size in bytes of FileInformation, which the caller should set according to the
given FileInformationClass.

FileInformationClass
Specifies the type of file information to be queried.The permitted values are a subset
of the enumeration FILE_INFORMATION_CLASS, described in the following section.

ReturnSingleEntry
Specifies whether a single entry should be returned. If false, as many entries as will fit
in the FileInformation buffer are returned.

FileName
Optionally specifies a filename pattern possibly containing “*” and “?” wildcards which
is used to filter the files in the directory.

RestartScan
Specifies whether the scan of the directory should be restarted, or should be resumed
from the current directory file pointer position.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, STATUS_INFO_LENGTH_MISMATCH,
STATUS_NO_SUCH_FILE, or STATUS_NO_MORE_FILES.

Related Win32 Functions
FindFirstFile, FindFirstFileEx, FindNextFile.

Remarks
None.

ZwQueryOleDirectoryFile

The operation specified by ZwQueryOleDirectoryFile is not implemented by any of the
supported file systems.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryOleDirectoryFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG BufferLength,
IN FILE_INFORMATION_CLASS FileInformationClass,
IN BOOLEAN ReturnSingleEntry,
IN PUNICODE_STRING FileName,
IN BOOLEAN RestartScan
);

1996 CH13 12/1/99 12:34 PM Page 319

Files: ZwQueryOleDirectoryFile320

Parameters

FileHandle
A handle to a file object representing a directory.The handle must grant
FILE_LIST_DIRECTORY access.

Event
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a variable that receives the final completion status and information about the
requested operation.

FileInformation
Points to a caller-allocated buffer or variable that receives the requested file
information.

FileInformationLength
The size in bytes of FileInformation, which the caller should set according to the
given FileInformationClass.

FileInformationClass
Specifies the type of file information to be queried.The permitted values are a subset
of the enumeration FILE_INFORMATION_CLASS, described in the following section.

ReturnSingleEntry
Specifies whether a single entry should be returned. If false, as many entries as will fit
in the FileInformation buffer are returned.

FileName
Optionally specifies a filename pattern possibly containing “*” and “?” wildcards,
which is used to filter the files in the directory.

RestartScan
Specifies whether the scan of the directory should be restarted, or should be resumed
from the current directory file pointer position.

1996 CH13 12/1/99 12:34 PM Page 320

Files: FILE_INFORMATION_CLASS 321

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, STATUS_INFO_LENGTH_MISMATCH,
STATUS_NO_SUCH_FILE, or STATUS_NO_MORE_FILES.

Related Win32 Functions
None.

Remarks
ZwQueryOleDirectoryFile is only present in Windows NT 4.0.

The query OLE directory function is not implemented by the FAT or NTFS file
systems.

FILE_INFORMATION_CLASS
Query Set File/Directory

typedef enum _FILE_INFORMATION_CLASS {
FileDirectoryInformation = 1, // 1 Y N D
FileFullDirectoryInformation, // 2 Y N D
FileBothDirectoryInformation, // 3 Y N D
FileBasicInformation, // 4 Y Y F
FileStandardInformation, // 5 Y N F
FileInternalInformation, // 6 Y N F
FileEaInformation, // 7 Y N F
FileAccessInformation, // 8 Y N F
FileNameInformation, // 9 Y N F
FileRenameInformation, // 10 N Y F
FileLinkInformation, // 11 N Y F
FileNamesInformation, // 12 Y N D
FileDispositionInformation, // 13 N Y F
FilePositionInformation, // 14 Y Y F
FileModeInformation = 16, // 16 Y Y F
FileAlignmentInformation, // 17 Y N F
FileAllInformation, // 18 Y N F
FileAllocationInformation, // 19 N Y F
FileEndOfFileInformation, // 20 N Y F
FileAlternateNameInformation, // 21 Y N F
FileStreamInformation, // 22 Y N F
FilePipeInformation, // 23 Y Y F
FilePipeLocalInformation, // 24 Y N F
FilePipeRemoteInformation, // 25 Y Y F
FileMailslotQueryInformation, // 26 Y N F
FileMailslotSetInformation, // 27 N Y F
FileCompressionInformation, // 28 Y N F
FileObjectIdInformation, // 29 Y Y F
FileCompletionInformation, // 30 N Y F
FileMoveClusterInformation, // 31 N Y F
FileQuotaInformation, // 32 Y Y F
FileReparsePointInformation, // 33 Y N F
FileNetworkOpenInformation, // 34 Y N F
FileAttributeTagInformation, // 35 Y N F
FileTrackingInformation // 36 N Y F

} FILE_INFORMATION_CLASS, *PFILE_INFORMATION_CLASS;

1996 CH13 12/1/99 12:34 PM Page 321

Files: FileDirectoryInformation322

FileDirectoryInformation
typedef struct _FILE_DIRECTORY_INFORMATION { // Information Class 1

ULONG NextEntryOffset;
ULONG Unknown;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
WCHAR FileName[1];

} FILE_DIRECTORY_INFORMATION, *PFILE_DIRECTORY_INFORMATION;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.A value of zero
indicates that this is the last entry.

Unknown
Interpretation unknown.

CreationTime
The time when the file was created in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

LastAccessTime
The time when the file was last accessed in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

LastWriteTime
The time when the file was last written in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

ChangeTime
The time when the file attributes were last changed in the standard time format (that
is, the number of 100-nanosecond intervals since January 1, 1601).

EndOfFile
The number of bytes from the beginning to the end of the file.

AllocationSize
The number of bytes allocated to the file.

FileAttributes
The attributes of the file. Defined attributes include:

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM

1996 CH13 12/1/99 12:34 PM Page 322

Files: FileFullDirectoryInformation 323

FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DEVICE
FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_SPARSE_FILE
FILE_ATTRIBUTE_REPARSE_POINT
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
FILE_ATTRIBUTE_ENCRYPTED

FileNameLength
The size in bytes of the FileName.

FileName
The name of the file.

Remarks
None.

FileFullDirectoryInformation
typedef struct _FILE_FULL_DIRECTORY_INFORMATION { // Information Class 2

ULONG NextEntryOffset;
ULONG Unknown;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaInformationLength;
WCHAR FileName[1];

} FILE_FULL_DIRECTORY_INFORMATION, *PFILE_FULL_DIRECTORY_INFORMATION;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.A value of zero
indicates that this is the last entry.

Unknown
Interpretation unknown.

CreationTime
The time when the file was created in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

1996 CH13 12/1/99 12:34 PM Page 323

Files: FileFullDirectoryInformation324

LastAccessTime
The time when the file was last accessed in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

LastWriteTime
The time when the file was last written in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

ChangeTime
The time when the file attributes were last changed in the standard time format (that
is, the number of 100-nanosecond intervals since January 1, 1601).

EndOfFile
The number of bytes from the beginning to the end of the file.

AllocationSize
The number of bytes allocated to the file.

FileAttributes
The attributes of the file. Defined attributes include:

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DEVICE
FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_SPARSE_FILE
FILE_ATTRIBUTE_REPARSE_POINT
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
FILE_ATTRIBUTE_ENCRYPTED

FileNameLength
The size in bytes of the name of the file.

EaInformationLength
The size in bytes of the extended attributes of the file.

FileName
The name of the file.

Remarks
None.

1996 CH13 12/1/99 12:34 PM Page 324

Files: FileBothDirectoryInformation 325

FileBothDirectoryInformation
typedef struct _FILE_BOTH_DIRECTORY_INFORMATION { // Information Class 3

ULONG NextEntryOffset;
ULONG Unknown;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaInformationLength;
UCHAR AlternateNameLength;
WCHAR AlternateName[12];
WCHAR FileName[1];

} FILE_BOTH_DIRECTORY_INFORMATION, *PFILE_BOTH_DIRECTORY_INFORMATION;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.A value of zero
indicates that this is the last entry.

Unknown
Interpretation unknown.

CreationTime
The time when the file was created in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

LastAccessTime
The time when the file was last accessed in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

LastWriteTime
The time when the file was last written in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

ChangeTime
The time when the file attributes were last changed in the standard time format (that
is, the number of 100-nanosecond intervals since January 1, 1601).

EndOfFile
The number of bytes from the beginning to the end of the file.

AllocationSize
The number of bytes allocated to the file.

1996 CH13 12/1/99 12:34 PM Page 325

Files: FileBothDirectoryInformation326

FileAttributes
The attributes of the file. Defined attributes include:

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DEVICE
FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_SPARSE_FILE
FILE_ATTRIBUTE_REPARSE_POINT
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
FILE_ATTRIBUTE_ENCRYPTED

FileNameLength
The size in bytes of the name of the file.

EaInformationLength
The size in bytes of the extended attributes of the file.

AlternateNameLength
The size in bytes of the alternate (short DOS 8.3 alias) name of the file.

AlternateName
The alternate (short DOS 8.3 alias) name of the file.

FileName
The name of the file.

Remarks
None.

FileBasicInformation
typedef struct _FILE_BASIC_INFORMATION { // Information Class 4

LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
ULONG FileAttributes;

} FILE_BASIC_INFORMATION, *PFILE_BASIC_INFORMATION;

Members

CreationTime
The time when the file was created in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

1996 CH13 12/1/99 12:34 PM Page 326

Files: FileStandardInformation 327

LastAccessTime
The time when the file was last accessed in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

LastWriteTime
The time when the file was last written in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

ChangeTime
The time when the file attributes were last changed in the standard time format (that
is, the number of 100-nanosecond intervals since January 1, 1601).

FileAttributes
The attributes of the file. Defined attributes include:

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DEVICE
FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_SPARSE_FILE
FILE_ATTRIBUTE_REPARSE_POINT
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
FILE_ATTRIBUTE_ENCRYPTED

Remarks
FILE_BASIC_INFORMATION is documented in the DDK.

FileStandardInformation
typedef struct _FILE_STANDARD_INFORMATION { // Information Class 5

LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
ULONG NumberOfLinks;
BOOLEAN DeletePending;
BOOLEAN Directory;

} FILE_STANDARD_INFORMATION, *PFILE_STANDARD_INFORMATION;

Members

AllocationSize
The number of bytes allocated to the file.

EndOfFile
The number of bytes from the beginning to the end of the file.

1996 CH13 12/1/99 12:34 PM Page 327

Files: FileStandardInformation328

NumberOfLinks
The number of directories in which the file appears.

DeletePending
Indicates whether the file will be deleted when the last handle to it is closed.

Directory
Indicates whether the file is a directory.

Remarks
FILE_STANDARD_INFORMATION is documented in the DDK.

FileInternalInformation
typedef struct _FILE_INTERNAL_INFORMATION { // Information Class 6

LARGE_INTEGER FileId;
} FILE_INTERNAL_INFORMATION, *PFILE_INTERNAL_INFORMATION;

Members

FileId
A numeric identifier for the file.

Remarks
The FileId can be used to open the file, when the FILE_OPEN_BY_FILE_ID
CreateOption is specified in a call to ZwCreateFile.

FileEaInformation
typedef struct _FILE_EA_INFORMATION { // Information Class 7

ULONG EaInformationLength;
} FILE_EA_INFORMATION, *PFILE_EA_INFORMATION;

Members

EaInformationLength
The size in bytes of the extended attributes of the file.

Remarks
None.

FileAccessInformation
typedef struct _FILE_ACCESS_INFORMATION { // Information Class 8

ACCESS_MASK GrantedAccess;
} FILE_ACCESS_INFORMATION, *PFILE_ACCESS_INFORMATION;

1996 CH13 12/1/99 12:34 PM Page 328

Files: FileRenameInformation and FileLinkInformation 329

Members

GrantedAccess
The access granted to the file by the handle used to perform the query.

Remarks
None.

FileNameInformation
typedef struct _FILE_NAME_INFORMATION { // Information Classes 9 and 21

ULONG FileNameLength;
WCHAR FileName[1];

} FILE_NAME_INFORMATION, *PFILE_NAME_INFORMATION,
FILE_ALTERNATE_NAME_INFORMATION, *PFILE_ALTERNATE_NAME_INFORMATION;

Members

FileNameLength
The size in bytes of the name of the file.

FileName
The name of the file.

Remarks
The alternate name of a file is its short DOS 8.3 alias.

FileRenameInformation and FileLinkInformation
typedef struct _FILE_LINK_RENAME_INFORMATION { // Info Classes 10 and 11

BOOLEAN ReplaceIfExists;
HANDLE RootDirectory;
ULONG FileNameLength;
WCHAR FileName[1];

} FILE_LINK_INFORMATION, *PFILE_LINK_INFORMATION,
FILE_RENAME_INFORMATION, *PFILE_RENAME_INFORMATION;

Members

ReplaceIfExists
Indicates whether an existing file with the same name as FileName should be deleted.

RootDirectory
A handle to the directory to which the FileName is relative.

FileNameLength
The size in bytes of the FileName.

1996 CH13 12/1/99 12:34 PM Page 329

Files: FileRenameInformation and FileLinkInformation330

FileName
The name of the file.

Remarks
None.

FileNamesInformation
typedef struct _FILE_NAMES_INFORMATION { // Information Class 12

ULONG NextEntryOffset;
ULONG Unknown;
ULONG FileNameLength;
WCHAR FileName[1];

} FILE_NAMES_INFORMATION, *PFILE_NAMES_INFORMATION;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.A value of zero
indicates that this is the last entry.

Unknown
Interpretation unknown.

FileNameLength
The size in bytes of the FileName.

FileName
The name of the file.

Remarks
None.

FileDispositionInformation
typedef struct _FILE_DISPOSITION_INFORMATION { // Information Class 13

BOOLEAN DeleteFile;
} FILE_DISPOSITION_INFORMATION, *PFILE_DISPOSITION_INFORMATION;

Members

DeleteFile
Indicates whether the file should be deleted.

Remarks
FILE_DISPOSITION_INFORMATION is documented in the DDK.

1996 CH13 12/1/99 12:34 PM Page 330

Files: FileAlignmentInformation 331

FilePositionInformation
typedef struct _FILE_POSITION_INFORMATION { // Information Class 14

LARGE_INTEGER CurrentByteOffset;
} FILE_POSITION_INFORMATION, *PFILE_POSITION_INFORMATION;

Members

CurrentByteOffset
The offset, in bytes, of the file pointer from the beginning of the file.

Remarks
FILE_POSITION_INFORMATION is documented in the DDK.

FileModeInformation
typedef struct _FILE_MODE_INFORMATION { // Information Class 16

ULONG Mode;
} FILE_MODE_INFORMATION, *PFILE_MODE_INFORMATION;

Members

Mode
The options associated with the file via the ZwCreateFile CreateOptions parameter or
the ZwOpenFile OpenOptions parameter.

Remarks
The options FILE_WRITE_THROUGH, FILE_SEQUENTIAL_ONLY, FILE_SYNCHRONOUS_IO_ALERT
and FILE_SYNCHRONOUS_IO_NONALERT can be set. Setting FILE_SYNCHRONOUS_IO_ALERT or
FILE_SYNCHRONOUS_IO_NONALERT is only possible if the file was opened for synchronous
I/O and just toggles the alertability of the file object.

FileAlignmentInformation
typedef struct _FILE_ALIGNMENT_INFORMATION { // Information Class 17

ULONG AlignmentRequirement;
} FILE_ALIGNMENT_INFORMATION, *PFILE_ALIGNMENT_INFORMATION;

Members

AlignmentRequirement
The required buffer alignment. Possible values include:

FILE_BYTE_ALIGNMENT
FILE_WORD_ALIGNMENT
FILE_LONG_ALIGNMENT
FILE_QUAD_ALIGNMENT
FILE_OCTA_ALIGNMENT
FILE_32_BYTE_ALIGNMENT
FILE_64_BYTE_ALIGNMENT
FILE_128_BYTE_ALIGNMENT
FILE_512_BYTE_ALIGNMENT

1996 CH13 12/1/99 12:34 PM Page 331

Files: FileAlignmentInformation332

Remarks
FILE_ALIGNMENT_INFORMATION is documented in the DDK.

FileAllInformation
typedef struct _FILE_ALL_INFORMATION { // Information Class 18

FILE_BASIC_INFORMATION BasicInformation;
FILE_STANDARD_INFORMATION StandardInformation;
FILE_INTERNAL_INFORMATION InternalInformation;
FILE_EA_INFORMATION EaInformation;
FILE_ACCESS_INFORMATION AccessInformation;
FILE_POSITION_INFORMATION PositionInformation;
FILE_MODE_INFORMATION ModeInformation;
FILE_ALIGNMENT_INFORMATION AlignmentInformation;
FILE_NAME_INFORMATION NameInformation;

} FILE_ALL_INFORMATION, *PFILE_ALL_INFORMATION;

Remarks
FILE_ALL_INFORMATION is a collection of other information classes.

FileAllocationInformation
typedef struct _FILE_ALLOCATION_INFORMATION { // Information Class 19

LARGE_INTEGER AllocationSize;
} FILE_ALLOCATION_INFORMATION, *PFILE_ALLOCATION_INFORMATION;

Members

AllocationSize
The number of bytes allocated to the file.

Remarks
None.

FileEndOfFileInformation
typedef struct _FILE_END_OF_FILE_INFORMATION { // Information Class 20

LARGE_INTEGER EndOfFile;
} FILE_END_OF_FILE_INFORMATION, *PFILE_END_OF_FILE_INFORMATION;

Members

EndOfFile
The number of bytes from the beginning to the end of the file.

Remarks
FILE_END_OF_FILE_INFORMATION is documented in the DDK.

1996 CH13 12/1/99 12:34 PM Page 332

Files: FilePipeInformation 333

FileStreamInformation
typedef struct _FILE_STREAM_INFORMATION { // Information Class 22

ULONG NextEntryOffset;
ULONG StreamNameLength;
LARGE_INTEGER EndOfStream;
LARGE_INTEGER AllocationSize;
WCHAR StreamName[1];

} FILE_STREAM_INFORMATION, *PFILE_STREAM_INFORMATION;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.A value of zero
indicates that this is the last entry.

StreamNameLength
The size in bytes of the name of the stream.

EndOfStream
The number of bytes from the beginning to the end of the stream.

AllocationSize
The number of bytes allocated to the stream.

StreamName
The name of the stream.

Remarks
None.

FilePipeInformation
typedef struct _FILE_PIPE_INFORMATION { // Information Class 23

ULONG ReadModeMessage;
ULONG WaitModeBlocking;

} FILE_PIPE_INFORMATION, *PFILE_PIPE_INFORMATION;

Members

ReadModeMessage
A boolean specifying whether the pipe read mode is message (if true) or byte (if false).

WaitModeBlocking
A boolean specifying whether the pipe wait mode is blocking (if true) or no wait (if
false).

Remarks
The Win32 functions GetNamedPipeHandleState and SetNamedPipeHandleState use this
information class.

1996 CH13 12/1/99 12:34 PM Page 333

Files: FilePipeLocalInformation334

FilePipeLocalInformation
typedef struct _FILE_PIPE_LOCAL_INFORMATION { // Information Class 24

ULONG MessageType;
ULONG Unknown1;
ULONG MaxInstances;
ULONG CurInstances;
ULONG InBufferSize;
ULONG Unknown2;
ULONG OutBufferSize;
ULONG Unknown3[2];
ULONG ServerEnd;

} FILE_PIPE_LOCAL_INFORMATION, *PFILE_PIPE_LOCAL_INFORMATION;

Members

MessageType
A boolean specifying whether the pipe is a message type pipe (if true) or a byte mode
pipe (if false).

Unknown1
Interpretation unknown.

MaxInstances
The maximum number of instances of the pipe that are allowed.

CurInstances
The current number of instances of the pipe.

InBufferSize
The size in bytes of the pipe input buffer.

Unknown2
Interpretation unknown.

OutBufferSize
The size in bytes of the pipe output buffer.

Unknown3
Interpretation unknown.

ServerEnd
A boolean specifying whether the pipe handle refers to the server end (if true) or
client end (if false) of the pipe.

Remarks
The Win32 functions GetNamedPipeInfo and GetNamedPipeHandleState use this infor-
mation class.

1996 CH13 12/1/99 12:34 PM Page 334

Files: FileMailslotQueryInformation 335

FilePipeRemoteInformation
typedef struct _FILE_PIPE_REMOTE_INFORMATION { // Information Class 25

LARGE_INTEGER CollectDataTimeout;
ULONG MaxCollectionCount;

} FILE_PIPE_REMOTE_INFORMATION, *PFILE_PIPE_REMOTE_INFORMATION;

Members

CollectDataTimeout
The maximum time, in units of 100-nanoseconds, that can elapse before the data is
transmitted over the network.

MaxCollectionCount
The maximum number of bytes that can be collected before the data is transmitted
over the network.

Remarks
The Win32 functions GetNamedPipeHandleState and SetNamedPipeHandleState use this
information class.

FileMailslotQueryInformation
typedef struct _FILE_MAILSLOT_QUERY_INFORMATION { // Information Class 26

ULONG MaxMessageSize;
ULONG Unknown;
ULONG NextSize;
ULONG MessageCount;
LARGE_INTEGER ReadTimeout;

} FILE_MAILSLOT_QUERY_INFORMATION, *PFILE_MAILSLOT_QUERY_INFORMATION;

Members

MaxMessageSize
The maximum size, in bytes, of a single message that can be written to the mailslot.

Unknown
Interpretation unknown.

NextSize
The size in bytes of the next message to be read from the mailslot. If no message is
available then NextSize is set to MAILSLOT_NO_MESSAGE.

MessageCount
The number of messages queued to the mailslot.

ReadTimeout
The maximum time, in units of 100-nanoseconds, that can elapse between starting to
read from the mailslot and a message becoming available.

1996 CH13 12/1/99 12:34 PM Page 335

Files: FileMailslotQueryInformation336

Remarks
The Win32 function GetMailslotInfo uses this information class.

FileMailslotSetInformation
typedef struct _FILE_MAILSLOT_SET_INFORMATION { // Information Class 27

LARGE_INTEGER ReadTimeout;
} FILE_MAILSLOT_SET_INFORMATION, *PFILE_MAILSLOT_SET_INFORMATION;

Members

ReadTimeout
The maximum time, in units of 100-nanoseconds, that can elapse between starting to
read from the mailslot and a message becoming available.

Remarks
The Win32 function SetMailslotInfo uses this information class.

FileCompressionInformation
typedef struct _FILE_COMPRESSION_INFORMATION { // Information Class 28

LARGE_INTEGER CompressedSize;
USHORT CompressionFormat;
UCHAR CompressionUnitShift;
UCHAR Unknown;
UCHAR ClusterSizeShift;

} FILE_COMPRESSION_INFORMATION, *PFILE_COMPRESSION_INFORMATION;

Members

CompressedSize
The size in bytes of the space occupied by a compressed file.

CompressionFormat
The compression algorithm used to compress the file. Defined values include:

COMPRESSION_FORMAT_NONE
COMPRESSION_FORMAT_LZNT1

CompressionUnitShift
The size of a compression unit expressed as the logarithm to the base two of the num-
ber of bytes in a compression unit.This member is only valid when CompressionFormat
is not COMPRESSION_FORMAT_NONE.

Unknown
Interpretation unknown.This member always contains the value 12 when
CompressionFormat is not COMPRESSION_FORMAT_NONE. Possibly the logarithm to the base
two of the number of bytes in a page.

1996 CH13 12/1/99 12:34 PM Page 336

Files: FileQuotaInformation 337

ClusterSizeShift
The size of a cluster expressed as the logarithm to the base two of the number of bytes
in a cluster.This member is only valid when CompressionFormat is not
COMPRESSION_FORMAT_NONE.

Remarks
None.

FileObjectIdInformation

This information class is not implemented by any of the supported file systems.The
file system control operations FSCTL_SET_OBJECT_ID, FSCTL_GET_OBJECT_ID, and
FSCTL_CREATE_OR_GET_OBJECT_ID are possibly the preferred mechanisms for accessing
this functionality.

FileCompletionInformation
typedef struct _FILE_COMPLETION_INFORMATION { // Information Class 30

HANDLE IoCompletionHandle;
ULONG CompletionKey;

} FILE_COMPLETION_INFORMATION, *PFILE_COMPLETION_INFORMATION;

Members

IoCompletionHandle
A handle to an I/O completion object.The handle must grant
IO_COMPLETION_MODIFY_STATE access.

CompletionKey
A value to be returned to a caller of ZwRemoveIoCompletion via the CompletionKey
parameter of that routine.

Remarks
None.

FileMoveClusterInformation

This information class is not implemented by any of the supported file systems.The
file system control operation FSCTL_MOVE_FILE is possibly the preferred mecha-
nism for accessing this functionality.

FileQuotaInformation

This information class is not implemented by any of the supported file systems.The
native system services ZwQueryQuotaInformationFile and ZwSetQuotaInformationFile
are possibly the preferred mechanisms for accessing this functionality.

1996 CH13 12/1/99 12:34 PM Page 337

Files: FileReparsePointInformation338

FileReparsePointInformation

This information class is not implemented by any of the supported file systems.The
file system control operations FSCTL_SET_REPARSE_POINT, FSCTL_GET_REPARSE_POINT and
FSCTL_DELETE_REPARSE_POINT are possibly the preferred mechanisms for accessing this
functionality.

FileNetworkOpenInformation
typedef struct _FILE_NETWORK_OPEN_INFORMATION { // Information Class 34

LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
ULONG FileAttributes;

} FILE_NETWORK_OPEN_INFORMATION, *PFILE_NETWORK_OPEN_INFORMATION;

Members

CreationTime
The time when the file was created in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

LastAccessTime
The time when the file was last accessed in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

LastWriteTime
The time when the file was last written in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

ChangeTime
The time when the file attributes were last changed in the standard time format (that
is, the number of 100-nanosecond intervals since January 1, 1601).

AllocationSize
The number of bytes allocated to the file.

EndOfFile
The number of bytes from the beginning to the end of the file.

FileAttributes
The attributes of the file. Defined attributes include:

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DEVICE

1996 CH13 12/1/99 12:34 PM Page 338

Files: Example 13.1 339

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_SPARSE_FILE
FILE_ATTRIBUTE_REPARSE_POINT
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
FILE_ATTRIBUTE_ENCRYPTED

Remarks
None.

FileAttributeTagInformation
typedef struct _FILE_ATTRIBUTE_TAG_INFORMATION {// Information Class 35

ULONG FileAttributes;
ULONG ReparseTag;

} FILE_ATTRIBUTE_TAG_INFORMATION, *PFILE_ATTRIBUTE_TAG_INFORMATION;

Members

FileAttributes
The attributes of the file. Defined attributes include:

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DEVICE
FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_SPARSE_FILE
FILE_ATTRIBUTE_REPARSE_POINT
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
FILE_ATTRIBUTE_ENCRYPTED

ReparseTag
The reparse tag, if any, of the file.The format of reparse tags is defined in winnt.h.

Remarks
None.

Example 13.1: Opening a File by File ID
#include “ntdll.h”

int main(int argc, char *argv[])
{

HANDLE hFile1 = CreateFile(argv[1], GENERIC_READ, FILE_SHARE_READ, 0,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);

1996 CH13 12/1/99 12:34 PM Page 339

Files: Example 13.1340

NT::IO_STATUS_BLOCK iosb;
NT::FILE_INTERNAL_INFORMATION fii;

NT::ZwQueryInformationFile(hFile1, &iosb, &fii, sizeof fii,
NT::FileInternalInformation);

NT::UNICODE_STRING name = {sizeof fii.FileId, sizeof fii.FileId,
PWSTR(&fii.FileId)};

NT::OBJECT_ATTRIBUTES oa = {sizeof oa, hFile1, &name};
HANDLE hFile2;

NT::ZwOpenFile(&hFile2, GENERIC_READ | SYNCHRONIZE, &oa, &iosb,
FILE_SHARE_READ,
FILE_SYNCHRONOUS_IO_NONALERT | FILE_OPEN_BY_FILE_ID);

CloseHandle(hFile1);

CHAR buf[400]; ULONG n;

ReadFile(hFile2, buf, sizeof buf, &n, 0);
WriteFile(GetStdHandle(STD_OUTPUT_HANDLE), buf, n, &n, 0);

CloseHandle(hFile2);

return 0;
}

When opening a file by file identifier, the ObjectName member of the
ObjectAttributes parameter to ZwCreateFile points to the file identifier, and the
RootDirectory member contains a handle that is used to identify the volume.This
handle can either be a handle to the volume or to any file on the volume. Not all file
systems support FILE_OPEN_BY_FILE_ID, but NTFS does.

1996 CH13 12/1/99 12:34 PM Page 340

14
Registry Keys

The system services described in this chapter create and manipulate registry key
objects.

Key handles to registry keys on remote systems are implemented entirely in user mode
and are not valid handles for the system services described in this chapter.

ZwCreateKey

ZwCreateKey creates or opens a registry key object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateKey(

OUT PHANDLE KeyHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN ULONG TitleIndex,
IN PUNICODE_STRING Class OPTIONAL,
IN ULONG CreateOptions,
OUT PULONG Disposition OPTIONAL
);

Parameters

KeyHandle
Points to a variable that will receive the key object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the key object.This parameter
can be zero, or any combination of the following flags:

KEY_QUERY_VALUE Values of key can be queried
KEY_SET_VALUE Values of key can be set
KEY_CREATE_SUB_KEY Subkeys can be created in the key
KEY_ENUMERATE_SUB_KEYS Subkeys of key can be enumerated
KEY_NOTIFY Key can be monitored
KEY_CREATE_LINK Not used
KEY_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

1996 CH14 12/1/99 12:34 PM Page 341

Registry Keys: ZwCreateKey342

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_PERMANENT and
OBJ_EXCLUSIVE are not valid attributes for a key object.

TitleIndex
Not used.

Class
Optionally points to a string that will be stored in the key.

CreateOptions
Specifies options that affect the creation of the key. Permitted values are:

REG_OPTION_VOLATILE 0x00000001L
REG_OPTION_CREATE_LINK 0x00000002L
REG_OPTION_BACKUP_RESTORE 0x00000004L
REG_OPTION_OPEN_LINK 0x00000008L

Disposition
Optionally points to a variable that receives an indication of whether the key was cre-
ated or opened.The values returned are:

REG_CREATED_NEW_KEY 0x00000001L
REG_OPENED_EXISTING_KEY 0x00000002L

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_OBJECT_TYPE_MISMATCH, STATUS_OBJECT_NAME_NOT_FOUND,
STATUS_KEY_DELETED, STATUS_NO_LOG_SPACE, or STATUS_CHILD_MUST_BE_VOLATILE.

Related Win32 Functions
RegCreateKey, RegCreateKeyEx.

Remarks
ZwCreateKey is documented in the DDK.

A registry symbolic link is created by first creating a key with the option
REG_OPTION_CREATE_LINK and then using ZwSetValueKey with a type of REG_LINK
and value name of “SymbolicLinkValue” to point to another key.The link data should
not include the zero-terminating character.

A symbolic link can be opened by specifying the attribute OBJ_OPENLINK in
ObjectAttributes. REG_OPTION_OPEN_LINK appears to have no effect.

ZwOpenKey

ZwOpenKey opens a registry key object.
NTSYSAPI
NTSTATUS
NTAPI

1996 CH14 12/1/99 12:34 PM Page 342

Registry Keys: ZwDeleteKey 343

ZwOpenKey(
OUT PHANDLE KeyHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters

KeyHandle
Points to a variable that will receive the key object handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the key object.This parameter
can be zero, or any combination of the following flags:

KEY_QUERY_VALUE Values of key can be queried
KEY_SET_VALUE Values of key can be set
KEY_CREATE_SUB_KEY Subkeys can be created in the key
KEY_ENUMERATE_SUB_KEYS Subkeys of key can be enumerated
KEY_NOTIFY Key can be monitored
KEY_CREATE_LINK Not used
KEY_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes. OBJ_PERMANENT and
OBJ_EXCLUSIVE are not valid attributes for a key object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_OBJECT_TYPE_MISMATCH, STATUS_OBJECT_NAME_NOT_FOUND,
or STATUS_KEY_DELETED.

Related Win32 Functions
RegOpenKey, RegOpenKeyEx.

Remarks
ZwOpenKey is documented in the DDK.

ZwDeleteKey

ZwDeleteKey deletes a key in the registry.
NTSYSAPI
NTSTATUS
NTAPI
ZwDeleteKey(

IN HANDLE KeyHandle
);

1996 CH14 12/1/99 12:34 PM Page 343

Registry Keys: ZwDeleteKey344

Parameters

KeyHandle
A handle to a key object.The handle must grant DELETE access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, or STATUS_CANNOT_DELETE.

Related Win32 Functions
RegDeleteKey.

Remarks
ZwDeleteKey is documented in the DDK.

ZwFlushKey

ZwFlushKey flushes changes to a key to disk.
NTSYSAPI
NTSTATUS
NTAPI
ZwFlushKey(

IN HANDLE KeyHandle
);

Parameters

KeyHandle
A handle to a key object.The handle need not grant any specific access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_KEY_DELETED, or STATUS_REGISTRY_IO_FAILED.

Related Win32 Functions
RegFlushKey.

Remarks
ZwFlushKey is documented in the DDK.

ZwSaveKey

ZwSaveKey saves a copy of a key and its subkeys in a file.
NTSYSAPI
NTSTATUS
NTAPI

1996 CH14 12/1/99 12:34 PM Page 344

Registry Keys: ZwSaveMergedKeys 345

ZwSaveKey(
IN HANDLE KeyHandle,
IN HANDLE FileHandle
);

Parameters

KeyHandle
A handle to a key object. The handle need not grant any specific access.

FileHandle
A handle to the file object in which the key is to be saved.The handle should grant
FILE_GENERIC_WRITE access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_PRIVILEGE_NOT_HELD, STATUS_REGISTRY_IO_FAILED, or
STATUS_KEY_DELETED.

Related Win32 Functions
RegSaveKey.

Remarks
SeBackupPrivilege is required to save a key.

ZwSaveMergedKeys

ZwSaveMergedKeys merges two keys and their subkeys and saves the result in a file.
NTSYSAPI
NTSTATUS
NTAPI
ZwSaveMergedKeys(

IN HANDLE KeyHandle1,
IN HANDLE KeyHandle2,
IN HANDLE FileHandle
);

Parameters

KeyHandle1
A handle to a key object.The handle need not grant any specific access.

KeyHandle2
A handle to a key object.The handle need not grant any specific access.

FileHandle
A handle to the file object in which the key is to be saved.The handle should grant
FILE_GENERIC_WRITE access.

1996 CH14 12/1/99 12:34 PM Page 345

Registry Keys: ZwSaveMergedKeys346

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_PRIVILEGE_NOT_HELD, STATUS_REGISTRY_IO_FAILED, or
STATUS_KEY_DELETED.

Related Win32 Functions
None.

Remarks
SeBackupPrivilege is required to save a key.

The keys identified by KeyHandle1 and KeyHandle2 must be stored in separate hives.

The routine ZwSaveMergedKeys is only present in Windows 2000.

ZwRestoreKey

ZwRestoreKey restores a key saved in a file to the registry.
NTSYSAPI
NTSTATUS
NTAPI
ZwRestoreKey(

IN HANDLE KeyHandle,
IN HANDLE FileHandle,
IN ULONG Flags
);

Parameters

KeyHandle
A handle to a key object.The handle need not grant any specific access.

FileHandle
A handle to the file object in which the key is to be saved.The handle should grant
FILE_GENERIC_READ access.

Flags
Specifies options that affect the restoration of the key. Permitted values are:

REG_WHOLE_HIVE_VOLATILE
REG_REFRESH_HIVE
REG_FORCE_RESTORE // Windows 2000 only

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_PRIVILEGE_NOT_HELD, STATUS_REGISTRY_IO_FAILED,
STATUS_CANNOT_DELETE, STATUS_KEY_DELETED, STATUS_INSUFFICIENT_RESOURCES or
STATUS_REGISTRY_CORRUPT.

1996 CH14 12/1/99 12:34 PM Page 346

Registry Keys: ZwLoadKey2 347

Related Win32 Functions
RegRestoreKey.

Remarks
SeRestorePrivilege is required to restore a key.

ZwLoadKey

ZwLoadKey mounts a key hive in the registry.
NTSYSAPI
NTSTATUS
NTAPI
ZwLoadKey(

IN POBJECT_ATTRIBUTES KeyObjectAttributes,
IN POBJECT_ATTRIBUTES FileObjectAttributes
);

Parameters

KeyObjectAttributes
Points to a structure that specifies the key object’s attributes. OBJ_PERMANENT and
OBJ_EXCLUSIVE are not valid attributes for a key object.

FileObjectAttributes
Points to a structure that specifies the file object’s attributes. OBJ_PERMANENT,
OBJ_EXCLUSIVE and OBJ_OPENLINK are not valid attributes for a file object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_PRIVILEGE_NOT_HELD, STATUS_REGISTRY_IO_FAILED,
STATUS_INSUFFICIENT_RESOURCES, or STATUS_REGISTRY_CORRUPT.

Related Win32 Functions
RegLoadKey.

Remarks
SeRestorePrivilege is required to load a key.

ZwLoadKey is equivalent to ZwLoadKey2 with a flags argument of zero.

ZwLoadKey2

ZwLoadKey2 mounts a key hive in the registry.
NTSYSAPI
NTSTATUS
NTAPI

1996 CH14 12/1/99 12:34 PM Page 347

Registry Keys: ZwLoadKey2348

ZwLoadKey2(
IN POBJECT_ATTRIBUTES KeyObjectAttributes,
IN POBJECT_ATTRIBUTES FileObjectAttributes
IN ULONG Flags
);

Parameters

KeyObjectAttributes
Points to a structure that specifies the key object’s attributes. OBJ_PERMANENT and
OBJ_EXCLUSIVE are not valid attributes for a key object.

FileObjectAttributes
Points to a structure that specifies the file object’s attributes. OBJ_PERMANENT,
OBJ_EXCLUSIVE and OBJ_OPENLINK are not valid attributes for a file object.

Flags
Specifies options that affect the restoration of the key. Permitted values are:

REG_NO_LAZY_FLUSH

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_PRIVILEGE_NOT_HELD, STATUS_REGISTRY_IO_FAILED,
STATUS_INSUFFICIENT_RESOURCES, or STATUS_REGISTRY_CORRUPT.

Related Win32 Functions
None.

Remarks
SeRestorePrivilege is required to load a key.

ZwUnloadKey

ZwUnloadKey dismounts a key hive in the registry.
NTSYSAPI
NTSTATUS
NTAPI
ZwUnloadKey(

IN POBJECT_ATTRIBUTES KeyObjectAttributes
);

Parameters

KeyObjectAttributes
Points to a structure that specifies the key object’s attributes. OBJ_PERMANENT and
OBJ_EXCLUSIVE are not valid attributes for a key object.

1996 CH14 12/1/99 12:34 PM Page 348

Registry Keys: ZwQueryOpenSubKeys 349

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_PRIVILEGE_NOT_HELD or STATUS_REGISTRY_IO_FAILED.

Related Win32 Functions
RegUnloadKey.

Remarks
SeRestorePrivilege is required to unload a key.

ZwQueryOpenSubKeys

ZwQueryOpenSubKeys reports on the number of open keys in a hive.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryOpenSubKeys(

IN POBJECT_ATTRIBUTES KeyObjectAttributes,
OUT PULONG NumberOfKeys
);

Parameters

KeyObjectAttributes
Points to a structure that specifies the key object’s attributes. OBJ_PERMANENT and
OBJ_EXCLUSIVE are not valid attributes for a key object.The key referred to by
KeyObjectAttributes must be the root of a hive.

NumberOfKeys
Points to a variable that receives the number of open keys in the hive.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_PARAMETER.

Related Win32 Functions
None.

Remarks
The routine ZwQueryOpenSubKeys is only present in Windows 2000.

1996 CH14 12/1/99 12:34 PM Page 349

Registry Keys: ZwReplaceKey350

ZwReplaceKey

ZwReplaceKey replaces a mounted key hive with another.
NTSYSAPI
NTSTATUS
NTAPI
ZwReplaceKey(

IN POBJECT_ATTRIBUTES NewFileObjectAttributes,
IN HANDLE KeyHandle,
IN POBJECT_ATTRIBUTES OldFileObjectAttributes
);

Parameters

NewFileObjectAttributes
Points to a structure that specifies the file object’s attributes. OBJ_PERMANENT,
OBJ_EXCLUSIVE, and OBJ_OPENLINK are not valid attributes for a file object.

KeyHandle
A handle to a key object.The handle need not grant any specific access.

OldFileObjectAttributes
Points to a structure that specifies the file object’s attributes. OBJ_PERMANENT,
OBJ_EXCLUSIVE, and OBJ_OPENLINK are not valid attributes for a file object.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_PRIVILEGE_NOT_HELD, STATUS_REGISTRY_IO_FAILED,
STATUS_INSUFFICIENT_RESOURCES, or STATUS_REGISTRY_CORRUPT.

Related Win32 Functions
RegReplaceKey.

Remarks
SeRestorePrivilege is required to replace a key.

ZwSetInformationKey

ZwSetInformationKey sets information affecting a key object.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetInformationKey(

IN HANDLE KeyHandle,
IN KEY_SET_INFORMATION_CLASS KeyInformationClass,
IN PVOID KeyInformation,
IN ULONG KeyInformationLength
);

1996 CH14 12/1/99 12:34 PM Page 350

Registry Keys: KeyLastWriteTimeInformation 351

Parameters

KeyHandle
A handle to a key object.The handle must grant KEY_SET_VALUE access.

KeyInformationClass
Specifies the type of key object information to be set.The permitted values are drawn
from the enumeration KEY_SET_INFORMATION_CLASS, described in the following section.

KeyInformation
Points to a caller-allocated buffer or variable that receives the key object information
to be set.

KeyInformationLength
The size in bytes of KeyInformation, which the caller should set according to the given
KeyInformationClass.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
None.

Remarks
None.

KEY_SET_INFORMATION_CLASS
typedef enum _KEY_SET_INFORMATION_CLASS {

KeyLastWriteTimeInformation
} KEY_SET_INFORMATION_CLASS;

KeyLastWriteTimeInformation
typedef struct _KEY_LAST_WRITE_TIME_INFORMATION {

LARGE_INTEGER LastWriteTime;
} KEY_LAST_WRITE_TIME_INFORMATION, *PKEY_LAST_WRITE_TIME_INFORMATION;

Members

LastWriteTime
The last time the key or any of its values changed in the standard time format (that is,
the number of 100-nanosecond intervals since January 1, 1601).

Remarks
None.

1996 CH14 12/1/99 12:34 PM Page 351

Registry Keys: ZwQueryKey352

ZwQueryKey

ZwQueryKey retrieves information about a key object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryKey(

IN HANDLE KeyHandle,
IN KEY_INFORMATION_CLASS KeyInformationClass,
OUT PVOID KeyInformation,
IN ULONG KeyInformationLength,
OUT PULONG ResultLength
);

Parameters

KeyHandle
A handle to a key object.The handle must grant KEY_QUERY_VALUE access, except when
querying KeyNameInformation when no specific access is required.

KeyInformationClass
Specifies the type of key object information to be queried.The permitted values are
drawn from the enumeration KEY_INFORMATION_CLASS, described in the following
section.

KeyInformation
Points to a caller-allocated buffer or variable that receives the requested key object
information.

KeyInformationLength
The size in bytes of KeyInformation, which the caller should set according to the given
KeyInformationClass.

ReturnLength
Points to a variable that receives the number of bytes actually returned to
KeyInformation if the call was successful.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_PARAMETER, or STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions
RegQueryInfoKey.

Remarks
ZwQueryKey is documented in the DDK.

1996 CH14 12/1/99 12:34 PM Page 352

Registry Keys: ZwEnumerateKey 353

ZwEnumerateKey

ZwEnumerateKey enumerates the subkeys of a key object.
NTSYSAPI
NTSTATUS
NTAPI
ZwEnumerateKey(

IN HANDLE KeyHandle,
IN ULONG Index,
IN KEY_INFORMATION_CLASS KeyInformationClass,
OUT PVOID KeyInformation,
IN ULONG KeyInformationLength,
OUT PULONG ResultLength
);

Parameters

KeyHandle
A handle to a key object.The handle must grant KEY_ENUMERATE_SUB_KEYS access.

Index
Specifies the zero-based index of the subkey for which the information is requested.

KeyInformationClass
Specifies the type of key object information to be queried.The permitted values
are drawn from the enumeration KEY_INFORMATION_CLASS, described in the following
section.

KeyInformation
Points to a caller-allocated buffer or variable that receives the requested key object
information.

KeyInformationLength
The size in bytes of KeyInformation, which the caller should set according to the given
KeyInformationClass.

ReturnLength
Points to a variable that receives the number of bytes actually returned to
KeyInformation if the call was successful.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_PARAMETER, STATUS_BUFFER_TOO_SMALL, or
STATUS_NO_MORE_ENTRIES.

Related Win32 Functions
RegEnumKey, RegEnumKeyEx.

Remarks
ZwEnumerateKey is documented in the DDK.

1996 CH14 12/1/99 12:34 PM Page 353

Registry Keys: KEY_INFORMATION_CLASS354

KEY_INFORMATION_CLASS
typedef enum _KEY_INFORMATION_CLASS {

KeyBasicInformation,
KeyNodeInformation,
KeyFullInformation,
KeyNameInformation

} KEY_INFORMATION_CLASS;

KeyBasicInformation
typedef struct _KEY_BASIC_INFORMATION {

LARGE_INTEGER LastWriteTime;
ULONG TitleIndex;
ULONG NameLength;
WCHAR Name[1]; // Variable length string

} KEY_BASIC_INFORMATION, *PKEY_BASIC_INFORMATION;

Members

LastWriteTime
The last time the key or any of its values changed in the standard time format (that is,
the number of 100-nanosecond intervals since January 1, 1601).

TitleIndex
Not used.

NameLength
The size in bytes of Name, including the zero-terminating character.

Name
A zero-terminated Unicode string naming the key.

Remarks
KEY_BASIC_INFORMATION is documented in the DDK.

KeyNodeInformation
typedef struct _KEY_NODE_INFORMATION {

LARGE_INTEGER LastWriteTime;
ULONG TitleIndex;
ULONG ClassOffset;
ULONG ClassLength;
ULONG NameLength;
WCHAR Name[1]; // Variable length string
// Class[1]; // Variable length string not declared

} KEY_NODE_INFORMATION, *PKEY_NODE_INFORMATION;

1996 CH14 12/1/99 12:34 PM Page 354

Registry Keys: KeyFullInformation 355

Members

LastWriteTime
The last time the key or any of its values changed in the standard time format (that is,
the number of 100-nanosecond intervals since January 1, 1601).

TitleIndex
Not used.

ClassOffset
The offset in bytes from the start of the KEY_NODE_INFORMATION structure to the class
name string.

ClassLength
The size in bytes of Class, including the zero-terminating character.

NameLength
The size in bytes of Name, including the zero-terminating character.

Name
A zero-terminated Unicode string naming the key.

Class
A zero-terminated Unicode string naming the key class.

Remarks
KEY_NODE_INFORMATION is documented in the DDK.

KeyFullInformation
typedef struct _KEY_FULL_INFORMATION {

LARGE_INTEGER LastWriteTime;
ULONG TitleIndex;
ULONG ClassOffset;
ULONG ClassLength;
ULONG SubKeys;
ULONG MaxNameLen;
ULONG MaxClassLen;
ULONG Values;
ULONG MaxValueNameLen;
ULONG MaxValueDataLen;
WCHAR Class[1]; // Variable length string

} KEY_FULL_INFORMATION, *PKEY_FULL_INFORMATION;

Members

LastWriteTime
The last time the key or any of its values changed in the standard time format (that is,
the number of 100-nanosecond intervals since January 1, 1601).

1996 CH14 12/1/99 12:34 PM Page 355

Registry Keys: KeyFullInformation356

TitleIndex
Not used.

ClassOffset
The offset in bytes from the start of the KEY_NODE_INFORMATION structure to the class
name string.

ClassLength
The size in bytes of Class, including the zero-terminating character.

SubKeys
The number of subkeys for the key.

MaxNameLen
The length of the longest subkey name.

MaxClassLen
The length of the longest subkey class name.

Values
The number of value entries for the key.

MaxValueNameLen
The length of the longest value entry name.

MaxValueDataLen
The length of the longest value entry data.

Class
A zero-terminated Unicode string naming the key class.

Remarks
KEY_FULL_INFORMATION is documented in the DDK.

KeyNameInformation
typedef struct _KEY_NAME_INFORMATION {

ULONG NameLength;
WCHAR Name[1]; // Variable length string

} KEY_NAME_INFORMATION, *PKEY_NAME_INFORMATION;

Members

NameLength
The size in bytes of Name, including the zero-terminating character.

Name
A zero-terminated Unicode string naming the key.

1996 CH14 12/1/99 12:34 PM Page 356

Registry Keys: ZwNotifyChangeKey 357

Remarks
This information class is only available in Windows 2000.

ZwNotifyChangeKey

ZwNotifyChangeKey monitors a key for changes.
NTSYSAPI
NTSTATUS
NTAPI
ZwNotifyChangeKey(

IN HANDLE KeyHandle,
IN HANDLE EventHandle OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG NotifyFilter,
IN BOOLEAN WatchSubtree,
IN PVOID Buffer,
IN ULONG BufferLength,
IN BOOLEAN Asynchronous
);

Parameters

KeyHandle
A handle to a key object. The handle must grant KEY_NOTIFY access.

EventHandle
Optionally specifies a handle to an event object to signal when the operation
completes.The handle must grant EVENT_MODIFY_STATE access.

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a caller-allocated buffer or variable that receives in the member
IoStatusBlock.Status, which is the status of the change notification.

1996 CH14 12/1/99 12:34 PM Page 357

Registry Keys: ZwNotifyChangeKey358

NotifyFilter
Specifies the types of changes to be monitored.This parameter can be any combina-
tion of the following flags:

REG_NOTIFY_CHANGE_NAME
REG_NOTIFY_CHANGE_ATTRIBUTES
REG_NOTIFY_CHANGE_LAST_SET
REG_NOTIFY_CHANGE_SECURITY

WatchSubtree
Specifies whether changes to all the keys in the subtree below KeyHandle should also
be monitored.

Buffer
Not used.

BufferLength
Not used. Must be zero.

Asynchronous
Specifies whether ZwNotifyChangeKey should return immediately.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING, STATUS_NOTIFY_CLEANUP,
STATUS_NOTIFY_ENUM_DIR, or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, or STATUS_KEY_DELETED.

Related Win32 Functions
RegNotifyChangeKeyValue.

Remarks
None.

ZwNotifyChangeMultipleKeys

ZwNotifyChangeMultipleKeys monitors one or two keys for changes.
NTSYSAPI
NTSTATUS
NTAPI
ZwNotifyChangeMultipleKeys (

IN HANDLE KeyHandle,
IN ULONG Flags,
IN POBJECT_ATTRIBUTES KeyObjectAttributes,
IN HANDLE EventHandle OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG NotifyFilter,
IN BOOLEAN WatchSubtree,
IN PVOID Buffer,
IN ULONG BufferLength,
IN BOOLEAN Asynchronous
);

1996 CH14 12/1/99 12:34 PM Page 358

Registry Keys: ZwNotifyChangeMultipleKeys 359

Parameters

KeyHandle
A handle to a key object.The handle must grant KEY_NOTIFY access.

Flags
Specifies options that affect the monitoring of the keys. Permitted values are:

REG_MONITOR_SINGLE_KEY 0x00
REG_MONITOR_SECOND_KEY 0x01

KeyObjectAttributes
Points to a structure that specifies a key object’s attributes. OBJ_PERMANENT and
OBJ_EXCLUSIVE are not valid attributes for a key object. If Flags specifies
REG_MONITOR_SECOND_KEY, the key identified by KeyObjectAttributes is opened for
REG_NOTIFY access and is monitored; otherwise KeyObjectAttributes may be a null
pointer.

EventHandle
Optionally specifies a handle to an event object to signal when the operation com-
pletes.The handle must grant EVENT_MODIFY_STATE access.

ApcRoutine
Optionally points to a routine to execute when the operation completes.The signature
of the routine is:

VOID (NTAPI *PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);

ApcContext
A void pointer that can be used to provide the ApcRoutine with contextual
information.

IoStatusBlock
Points to a caller-allocated buffer or variable that receives in the member
IoStatusBlock.Status, whcih is the status of the change notification.

NotifyFilter
Specifies the types of changes to be monitored.This parameter can be any combina-
tion of the following flags:

REG_NOTIFY_CHANGE_NAME
REG_NOTIFY_CHANGE_ATTRIBUTES
REG_NOTIFY_CHANGE_LAST_SET
REG_NOTIFY_CHANGE_SECURITY

WatchSubtree
Specifies whether changes to all the keys in the subtree below KeyHandle should also
be monitored.

1996 CH14 12/1/99 12:34 PM Page 359

Registry Keys: ZwNotifyChangeMultipleKeysZwNotifyChangeMultipleKeys360

Buffer
Not used.

BufferLength
Not used. Must be zero.

Asynchronous
Specifies whether ZwNotifyChangeMultipleKeys should return immediately.

Return Value
Returns STATUS_SUCCESS, STATUS_PENDING, STATUS_NOTIFY_CLEANUP,
STATUS_NOTIFY_ENUM_DIR, or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, or STATUS_KEY_DELETED.

Related Win32 Functions
None.

Remarks
The keys identified by KeyHandle and KeyObjectAttributes must be stored in separate
hives.

The routine ZwNotifyChangeMultipleKeys is only present in Windows 2000.

ZwDeleteValueKey

ZwDeleteValueKey deletes a value from a key.
NTSYSAPI
NTSTATUS
NTAPI
ZwDeleteValueKey(

IN HANDLE KeyHandle,
IN PUNICODE_STRING ValueName
);

Parameters

KeyHandle
A handle to a key object.The handle must grant KEY_SET_VALUE access.

ValueName
The name of the value to be deleted.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_OBJECT_NAME_NOT_FOUND, STATUS_KEY_DELETED, or
STATUS_NO_LOG_SPACE.

1996 CH14 12/1/99 12:34 PM Page 360

Registry Keys: ZwSetValueKey 361

Related Win32 Functions
RegDeleteValue.

Remarks
None.

ZwSetValueKey

ZwSetValueKey updates or adds a value to a key.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetValueKey(

IN HANDLE KeyHandle,
IN PUNICODE_STRING ValueName,
IN ULONG TitleIndex,
IN ULONG Type,
IN PVOID Data,
IN ULONG DataSize
);

Parameters

KeyHandle
A handle to a key object.The handle must grant KEY_SET_VALUE access.

ValueName
The name of the value to be set.

TitleIndex
Not used.

Type
Specifies the data type of the value to be set. Permitted values are:

REG_NONE
REG_SZ
REG_EXPAND_SZ
REG_BINARY
REG_DWORD
REG_DWORD_LITTLE_ENDIAN
REG_DWORD_BIG_ENDIAN
REG_LINK
REG_MULTI_SZ
REG_RESOURCE_LIST
REG_FULL_RESOURCE_DESCRIPTOR
REG_RESOURCE_REQUIREMENTS_LIST
REG_QWORD
REG_QWORD_LITTLE_ENDIAN

Data
Points to a caller-allocated buffer or variable that contains the data of the value.

1996 CH14 12/1/99 12:34 PM Page 361

Registry Keys: ZwSetValueKey362

DataSize
The size in bytes of Data.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_KEY_DELETED, or STATUS_NO_LOG_SPACE.

Related Win32 Functions
RegSetValue, RegSetValueEx.

Remarks
ZwSetValueKey is documented in the DDK.

ZwQueryValueKey

ZwQueryValueKey retrieves information about a key value.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryValueKey(

IN HANDLE KeyHandle,
IN PUNICODE_STRING ValueName,
IN KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass,
OUT PVOID KeyValueInformation,
IN ULONG KeyValueInformationLength,
OUT PULONG ResultLength
);

Parameters

KeyHandle
A handle to a key object.The handle must grant KEY_QUERY_VALUE access.

ValueName
The name of the value to be deleted.

KeyValueInformationClass
Specifies the type of key object value information to be queried.The permitted
values are drawn from the enumeration KEY_VALUE_INFORMATION_CLASS, described in the
following section.

KeyValueInformation
Points to a caller-allocated buffer or variable that receives the requested key object
value information.

KeyValueInformationLength
Specifies the size in bytes of KeyValueInformation, which the caller should set accord-
ing to the given KeyValueInformationClass.

1996 CH14 12/1/99 12:34 PM Page 362

Registry Keys: ZwEnumerateValueKey 363

ReturnLength
Points to a variable that receives the number of bytes actually returned to
KeyValueInformation if the call was successful.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_OBJECT_NAME_NOT_FOUND, STATUS_KEY_DELETED or
STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions
RegQueryValue, RegQueryValueEx.

Remarks
ZwQueryValueKey is documented in the DDK.

ZwEnumerateValueKey

ZwEnumerateValueKey enumerates the values of a key.
NTSYSAPI
NTSTATUS
NTAPI
ZwEnumerateValueKey(

IN HANDLE KeyHandle,
IN ULONG Index,
IN KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass,
OUT PVOID KeyValueInformation,
IN ULONG KeyValueInformationLength,
OUT PULONG ResultLength
);

Parameters

KeyHandle
A handle to a key object.The handle must grant KEY_QUERY_VALUE access.

Index
Specifies the zero-based index of the value for which the information is requested.

KeyValueInformationClass
Specifies the type of key object value information to be queried.The permitted
values are drawn from the enumeration KEY_VALUE_INFORMATION_CLASS, described in the
following section.

KeyValueInformation
Points to a caller-allocated buffer or variable that receives the requested key object
value information.

KeyValueInformationLength
Specifies the size in bytes of KeyValueInformation, which the caller should set accord-
ing to the given KeyValueInformationClass.

1996 CH14 12/1/99 12:34 PM Page 363

Registry Keys: ZwEnumerateValueKey364

ReturnLength
Points to a variable that receives the number of bytes actually returned to
KeyValueInformation if the call was successful.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_OBJECT_NAME_NOT_FOUND, STATUS_KEY_DELETED,
STATUS_BUFFER_TOO_SMALL, or STATUS_NO_MORE_ENTRIES.

Related Win32 Functions
RegEnumValue.

Remarks
ZwEnumerateValueKey is documented in the DDK.

KEY_VALUE_INFORMATION_CLASS
typedef enum _KEY_VALUE_INFORMATION_CLASS { KeyValueBasicInformation,

KeyValueFullInformation,
KeyValuePartialInformation,
KeyValueFullInformationAlign64

} KEY_VALUE_INFORMATION_CLASS;

KeyValueBasicInformation
typedef struct _KEY_VALUE_BASIC_INFORMATION {

ULONG TitleIndex;
ULONG Type;
ULONG NameLength;
WCHAR Name[1]; // Variable length string

} KEY_VALUE_BASIC_INFORMATION, *PKEY_VALUE_BASIC_INFORMATION;

Members

TitleIndex
Not used.

Type
The data type of the value.The defined values are:

REG_NONE
REG_SZ
REG_EXPAND_SZ
REG_BINARY
REG_DWORD
REG_DWORD_LITTLE_ENDIAN
REG_DWORD_BIG_ENDIAN
REG_LINK
REG_MULTI_SZ
REG_RESOURCE_LIST
REG_FULL_RESOURCE_DESCRIPTOR
REG_RESOURCE_REQUIREMENTS_LIST

1996 CH14 12/1/99 12:34 PM Page 364

Registry Keys: KeyValueFullInformation and KeyValueFullInformationAlign64 365

REG_QWORD
REG_QWORD_LITTLE_ENDIAN

NameLength
The size in bytes of Name, including the zero-terminating character.

Name
A zero-terminated Unicode string naming the value.

Remarks
KEY_VALUE_BASIC_INFORMATION is documented in the DDK.

KeyValueFullInformation and
KeyValueFullInformationAlign64
typedef struct _KEY_VALUE_FULL_INFORMATION {

ULONG TitleIndex;
ULONG Type;
ULONG DataOffset;
ULONG DataLength;
ULONG NameLength;
WCHAR Name[1]; // Variable length string
// Data[1]; // Variable length data not declared

} KEY_VALUE_FULL_INFORMATION, *PKEY_VALUE_FULL_INFORMATION;

Members

TitleIndex
Not used.

Type
The data type of the value.The defined values are:

REG_NONE
REG_SZ
REG_EXPAND_SZ
REG_BINARY
REG_DWORD
REG_DWORD_LITTLE_ENDIAN
REG_DWORD_BIG_ENDIAN
REG_LINK
REG_MULTI_SZ
REG_RESOURCE_LIST
REG_FULL_RESOURCE_DESCRIPTOR
REG_RESOURCE_REQUIREMENTS_LIST
REG_QWORD
REG_QWORD_LITTLE_ENDIAN

DataOffset
The offset in bytes from the start of the KEY_VALUE_FULL_INFORMATION structure to the
value’s data.

1996 CH14 12/1/99 12:34 PM Page 365

Registry Keys: KeyValueFullInformation and KeyValueFullInformationAlign64366

DataLength
The size in bytes of Data.

NameLength
The size in bytes of Name, including the zero-terminating character.

Name
A zero-terminated Unicode string naming the value.

Data
The data of the value.

Remarks
KEY_VALUE_FULL_INFORMATION is documented in the DDK.

KeyValueFullInformationAlign64 is only available in Windows 2000 and ensures that
the Data is aligned on a 64-bit boundary.

KeyValuePartialInformation
typedef struct _KEY_VALUE_PARTIAL_INFORMATION {

ULONG TitleIndex;
ULONG Type;
ULONG DataLength;
UCHAR Data[1]; // Variable length data

} KEY_VALUE_PARTIAL_INFORMATION, *PKEY_VALUE_PARTIAL_INFORMATION;

Members

TitleIndex
Not used.

Type
The data type of the value.The defined values are:

REG_NONE
REG_SZ
REG_EXPAND_SZ
REG_BINARY
REG_DWORD
REG_DWORD_LITTLE_ENDIAN
REG_DWORD_BIG_ENDIAN
REG_LINK
REG_MULTI_SZ
REG_RESOURCE_LIST
REG_FULL_RESOURCE_DESCRIPTOR
REG_RESOURCE_REQUIREMENTS_LIST
REG_QWORD
REG_QWORD_LITTLE_ENDIAN

DataLength
The size in bytes of Data.

1996 CH14 12/1/99 12:34 PM Page 366

Registry Keys: ZwQueryMultipleValueKey 367

Data
The data of the value.

Remarks
KEY_VALUE_PARTIAL_INFORMATION is documented in the DDK.

ZwQueryMultipleValueKey

ZwQueryMultipleValueKey retrieves information about multiple key values.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryMultipleValueKey(

IN HANDLE KeyHandle,
IN OUT PKEY_VALUE_ENTRY ValueList,
IN ULONG NumberOfValues,
OUT PVOID Buffer,
IN OUT PULONG Length,
OUT PULONG ReturnLength
);

Parameters

KeyHandle
A handle to a key object.The handle must grant KEY_QUERY_VALUE access.

ValueList
Points to a caller-allocated buffer or variable that contains an array of value names to
be queried and that receives information about the data of the values.

NumberOfValues
The number of elements in the ValueList.

Buffer
Points to a caller-allocated buffer or variable that receives the data of the values.

Length
Points to a variable that specifies the size in bytes of Buffer and that receives the
number of bytes actually returned to Buffer if the call was successful.

ReturnLength
Points to a variable that receives the number of bytes actually returned to Buffer if the
call was successful, or the number of bytes needed to contain the available data if the
call fails with STATUS_BUFFER_TOO_SMALL.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_OBJECT_NAME_NOT_FOUND, STATUS_KEY_DELETED, or
STATUS_BUFFER_TOO_SMALL.

1996 CH14 12/1/99 12:34 PM Page 367

Registry Keys: ZwQueryMultipleValueKey368

Related Win32 Functions
RegQueryMultipleValues.

Remarks
None.

KEY_VALUE_ENTRY
typedef struct _KEY_VALUE_ENTRY {

PUNICODE_STRING ValueName;
ULONG DataLength;
ULONG DataOffset;
ULONG Type;

} KEY_VALUE_ENTRY, *PKEY_VALUE_ENTRY;

Members

ValueName
Specifies the name of the value whose data is to be retrieved.

DataLength
Receives the length in bytes of the data of the value.

DataOffset
Receives the offset in bytes from the start of the Buffer to the value’s data.

Type
Receives the data type of the value.

Remarks
None.

ZwInitializeRegistry

ZwInitializeRegistry initializes the registry.
NTSYSAPI
NTSTATUS
NTAPI
ZwInitializeRegistry(

IN BOOLEAN Setup
);

Parameters

Setup
Specifies whether the system was booted for system setup.

1996 CH14 12/1/99 12:34 PM Page 368

Registry Keys: ZwInitializeRegistry 369

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
None.

Remarks
The Session Manager processes (smss.exe) calls ZwInitializeRegistry to initialize the
registry during system startup. Once the registry has been initialized, subsequent calls
to ZwInitializeRegistry fail with STATUS_ACCESS_DENIED.

1996 CH14 12/1/99 12:34 PM Page 369

1996 CH14 12/1/99 12:34 PM Page 370

15
Security and Auditing

The system services described in this chapter are used to implement access checks and
auditing for private objects.

ZwPrivilegeCheck

ZwPrivilegeCheck checks whether a set of privileges are enabled in a token.
NTSYSAPI
NTSTATUS
NTAPI
ZwPrivilegeCheck(

IN HANDLE TokenHandle,
IN PPRIVILEGE_SET RequiredPrivileges,
OUT PBOOLEAN Result
);

Parameters

TokenHandle
A handle to a token object.The handle must grant TOKEN_QUERY access.

RequiredPrivileges
Points to a structure specifying the privileges required.

Result
Points to a variable that receives the result of the privilege check.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, or STATUS_BAD_IMPERSONATION_LEVEL.

Related Win32 Functions
PrivilegeCheck.

Remarks
PrivilegeCheck exposes the full functionality of ZwPrivilegeCheck.

1996 CH15 12/2/99 9:29 AM Page 371

Security and Auditing: ZwPrivilegeObjectAuditAlarm372

ZwPrivilegeObjectAuditAlarm

ZwPrivilegeObjectAuditAlarm generates an audit alarm describing the use of privi-
leges in conjunction with a handle to an object.
NTSYSAPI
NTSTATUS
NTAPI
ZwPrivilegeObjectAuditAlarm(

IN PUNICODE_STRING SubsystemName,
IN PVOID HandleId,
IN HANDLE TokenHandle,
IN ACCESS_MASK DesiredAccess,
IN PPRIVILEGE_SET Privileges,
IN BOOLEAN AccessGranted
);

Parameters

SubsystemName
Points to a name identifying the subsystem generating the audit alarm.

HandleId
A value representing the client’s handle to the object. If the access is denied, this
parameter is ignored.

TokenHandle
A handle to the token object representing the client requesting the operation.
The handle must grant TOKEN_QUERY access.

DesiredAccess
Specifies the access requested.This mask must have been mapped by the
MapGenericMask or RtlMapGenericMask function to contain no generic access rights.

Privileges
Points to a PRIVILEGE_SET structure that specifies the set of privileges required for the
access.

AccessGranted
Points to a variable that receives an indication of whether access was granted or
denied.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_PRIVILEGE_NOT_HELD,
STATUS_BAD_IMPERSONATION_LEVEL, or STATUS_GENERIC_NOT_MAPPED.

Related Win32 Functions
ObjectPrivilegeAuditAlarm.

1996 CH15 12/2/99 9:29 AM Page 372

Security and Auditing: ZwPrivilegedServiceAuditAlarm 373

Remarks
SeAuditPrivilege is required to generate an audit alarm.

ObjectPrivilegeAuditAlarm exposes the full functionality of
ZwPrivilegeObjectAuditAlarm.

ZwPrivilegedServiceAuditAlarm

ZwPrivilegedServiceAuditAlarm generates an audit alarm describing the use of
privileges.
NTSYSAPI
NTSTATUS
NTAPI
ZwPrivilegedServiceAuditAlarm(

IN PUNICODE_STRING SubsystemName,
IN PUNICODE_STRING ServiceName,
IN HANDLE TokenHandle,
IN PPRIVILEGE_SET Privileges,
IN BOOLEAN AccessGranted
);

Parameters

SubsystemName
Points to a name identifying the subsystem generating the audit alarm.

ServiceName
Points to a string specifying the name of the service to which the client gained access
or attempted to gain access.

TokenHandle
A handle to the token object representing the client requesting the operation.
The handle must grant TOKEN_QUERY access.

Privileges
Points to a PRIVILEGE_SET structure that specifies the set of privileges required for the
access.

AccessGranted
Points to a variable that receives an indication of whether access was granted or
denied.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_PRIVILEGE_NOT_HELD, or
STATUS_BAD IMPERSONATION_LEVEL.

Related Win32 Functions
PrivilegedServiceAuditAlarm.

1996 CH15 12/2/99 9:29 AM Page 373

Security and Auditing: ZwPrivilegedServiceAuditAlarm374

Remarks
SeAuditPrivilege is required to generate an audit alarm.

PrivilegedServiceAuditAlarm exposes the full functionality of
ZwPrivilegedServiceAuditAlarm.

ZwAccessCheck

ZwAccessCheck checks whether a security descriptor grants the requested access to an
agent represented by a token object.
NTSYSAPI
NTSTATUS
NTAPI
ZwAccessCheck(

IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN HANDLE TokenHandle,
IN ACCESS_MASK DesiredAccess,
IN PGENERIC_MAPPING GenericMapping,
IN PPRIVILEGE_SET PrivilegeSet,
IN PULONG PrivilegeSetLength,
OUT PACCESS_MASK GrantedAccess,
OUT PBOOLEAN AccessStatus
);

Parameters

SecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure against which access is checked.

TokenHandle
A handle to the token object representing the client requesting the operation.
The handle must grant TOKEN_QUERY access.

DesiredAccess
Specifies the access mask to be requested.This mask must have been mapped by the
MapGenericMask or RtlMapGenericMask function to contain no generic access rights.

GenericMapping
Points to the GENERIC_MAPPING structure associated with the object for which access is
being checked.

PrivilegeSet
Points to a PRIVILEGE_SET structure that the function fills with any privileges used to
perform the access validation.

PrivilegeSetLength
Specifies the size, in bytes, of PrivilegeSet.

GrantedAccess
Points to a variable that receives the granted access mask.

1996 CH15 12/2/99 9:29 AM Page 374

Security and Auditing: ZwAccessCheckAndAuditAlarm 375

AccessStatus
Points to a variable that receives the result of the access check.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_BUFFER_TOO_SMALL,
STATUS_NO_IMPERSONATION_TOKEN, STATUS_INVALID_SECURITY_DESCR,
STATUS_BAD_IMPERSONATION_LEVEL, or STATUS_GENERIC_NOT_MAPPED.

Related Win32 Functions
AccessCheck.

Remarks
AccessCheck exposes the full functionality of ZwAccessCheck.

ZwAccessCheckAndAuditAlarm

ZwAccessCheckAndAuditAlarm checks whether a security descriptor grants the
requested access to an agent represented by the impersonation token of the current
thread. If the security descriptor has a SACL with ACEs that apply to the agent, any
necessary audit messages are generated.
NTSYSAPI
NTSTATUS
NTAPI
ZwAccessCheckAndAuditAlarm(

IN PUNICODE_STRING SubsystemName,
IN PVOID HandleId,
IN PUNICODE_STRING ObjectTypeName,
IN PUNICODE_STRING ObjectName,
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN ACCESS_MASK DesiredAccess,
IN PGENERIC_MAPPING GenericMapping,
IN BOOLEAN ObjectCreation,
OUT PACCESS_MASK GrantedAccess,
OUT PBOOLEAN AccessStatus,
OUT PBOOLEAN GenerateOnClose
);

Parameters

SubsystemName
Points to a name identifying the subsystem generating the audit alarm.

HandleId
A value representing the client’s handle to the object. If the access is denied, this
parameter is ignored.

ObjectTypeName
Points to a string specifying the type of object to which the client is requesting access.

1996 CH15 12/2/99 9:29 AM Page 375

Security and Auditing: ZwAccessCheckAndAuditAlarm376

ObjectName
Points to a string specifying the name of the object to which the client gained access
or attempted to gain access.

SecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure for the object being accessed.

DesiredAccess
Specifies the access requested.This mask must have been mapped by the
MapGenericMask or RtlMapGenericMask function to contain no generic access rights.

GenericMapping
Points to the GENERIC_MAPPING structure associated with the object for which access is
being checked.

ObjectCreation
Specifies whether a new object will be created or an existing object will be opened.

GrantedAccess
Points to a variable that receives the access granted.

AccessStatus
Points to a variable that receives an indication of whether access was granted or
denied.

GenerateOnClose
Points to a variable that receives an indication of whether an audit alarm should be
generated when the handle is closed.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_INVALID_SECURITY_DESCR, or STATUS_GENERIC_NOT_MAPPED.

Related Win32 Functions
AccessCheckAndAuditAlarm.

Remarks
SeAuditPrivilege is required to generate an audit alarm.

AccessCheckAndAuditAlarm exposes the full functionality of
ZwAccessCheckAndAuditAlarm.

1996 CH15 12/2/99 9:29 AM Page 376

Security and Auditing: ZwAccessCheckByType 377

ZwAccessCheckByType

ZwAccessCheckByType checks whether a security descriptor grants the requested access
to an agent represented by a token object.
NTSYSAPI
NTSTATUS
NTAPI
ZwAccessCheckByType(

IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN PSID PrincipalSelfSid,
IN HANDLE TokenHandle,
IN ULONG DesiredAccess,
IN POBJECT_TYPE_LIST ObjectTypeList,
IN ULONG ObjectTypeListLength,
IN PGENERIC_MAPPING GenericMapping,
IN PPRIVILEGE_SET PrivilegeSet,
IN PULONG PrivilegeSetLength,
OUT PACCESS_MASK GrantedAccess,
OUT PULONG AccessStatus
);

Parameters

SecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure against which access is checked.

PrincipalSelfSid
Points to a SID that is used to replace any occurrence in SecurityDescriptor of the
well-known SID PRINCIPAL_SELF.

TokenHandle
A handle to the token object representing the client requesting the operation.The
handle must grant TOKEN_QUERY access.

DesiredAccess
Specifies the access mask to be requested.This mask must have been mapped by the
MapGenericMask or RtlMapGenericMask function to contain no generic access rights.

ObjectTypeList
Points to an array of OBJECT_TYPE_LIST structures that identify the hierarchy of object
types for which to check access.

ObjectTypeListLength
The number of elements in the ObjectTypeList array.

GenericMapping
Points to the GENERIC_MAPPING structure associated with the object for which access is
being checked.

PrivilegeSet
Points to a PRIVILEGE_SET structure that the function fills with any privileges used to
perform the access validation.

1996 CH15 12/2/99 9:29 AM Page 377

Security and Auditing: ZwAccessCheckByType378

PrivilegeSetLength
Specifies the size, in bytes, of PrivilegeSet.

GrantedAccess
Points to a variable that receives the granted access mask.

AccessStatus
Points to a variable that receives the result of the access check.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_BUFFER_TOO_SMALL,
STATUS_NO_IMPERSONATION_TOKEN, STATUS_INVALID_SECURITY_DESCR,
STATUS_BAD_IMPERSONATION_LEVEL, or STATUS_GENERIC_NOT_MAPPED.

Related Win32 Functions
AccessCheckByType.

Remarks
AccessCheckByType exposes the full functionality of ZwAccessCheckByType.

The routine ZwAccessCheckByType is only present in Windows 2000.

ZwAccessCheckByTypeAndAuditAlarm

ZwAccessCheckByTypeAndAuditAlarm checks whether a security descriptor grants the
requested access to an agent represented by the impersonation token of the current
thread. If the security descriptor has a SACL with ACEs that apply to the agent, any
necessary audit messages are generated.
NTSYSAPI
NTSTATUS
NTAPI
ZwAccessCheckByTypeAndAuditAlarm(

IN PUNICODE_STRING SubsystemName,
IN PVOID HandleId,
IN PUNICODE_STRING ObjectTypeName,
IN PUNICODE_STRING ObjectName,
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN PSID PrincipalSelfSid,
IN ACCESS_MASK DesiredAccess,
IN AUDIT_EVENT_TYPE AuditType,
IN ULONG Flags,
IN POBJECT_TYPE_LIST ObjectTypeList,
IN ULONG ObjectTypeListLength,
IN PGENERIC_MAPPING GenericMapping,
IN BOOLEAN ObjectCreation,
OUT PACCESS_MASK GrantedAccess,
OUT PULONG AccessStatus,
OUT PBOOLEAN GenerateOnClose
);

1996 CH15 12/2/99 9:29 AM Page 378

Security and Auditing: ZwAccessCheckByTypeAndAuditAlarm 379

Parameters

SubsystemName
Points to a name identifying the subsystem generating the audit alarm.

HandleId
A value representing the client’s handle to the object. If the access is denied, this
parameter is ignored.

ObjectTypeName
Points to a string specifying the type of object to which the client is requesting access.

ObjectName
Points to a string specifying the name of the object to which the client gained access
or attempted to gain access.

SecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure for the object being accessed.

PrincipalSelfSid
Points to a SID that is used to replace any occurrence in SecurityDescriptor of the
well-known SID PRINCIPAL_SELF.

DesiredAccess
Specifies the access requested.This mask must have been mapped by the
MapGenericMask or RtlMapGenericMask function to contain no generic access rights.

AuditType
Specifies the type of audit to be generated. Permitted values are drawn from the
enumeration AUDIT_EVENT_TYPE.

typedef enum _AUDIT_EVENT_TYPE {
AuditEventObjectAccess,
AuditEventDirectoryServiceAccess

} AUDIT_EVENT_TYPE, *PAUDIT_EVENT_TYPE;

Flags
A bit array of flags that affect the behavior of the routine.The following flags are
defined:

AUDIT_ALLOW_NO_PRIVILEGE

ObjectTypeList
Points to an array of OBJECT_TYPE_LIST structures that identify the hierarchy of object
types for which to check access.

ObjectTypeListLength
The number of elements in the ObjectTypeList array.

GenericMapping

1996 CH15 12/2/99 9:29 AM Page 379

Security and Auditing: ZwAccessCheckByTypeAndAuditAlarm380

Points to the GENERIC_MAPPING structure associated with the object for which access is
being checked.

ObjectCreation
Specifies whether a new object will be created or an existing object will be opened.

GrantedAccess
Points to a variable that receives the access granted.

AccessStatus
Points to a variable that receives an indication of whether access was granted or
denied.

GenerateOnClose
Points to a variable that receives an indication of whether an audit alarm should be
generated when the handle is closed.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_INVALID_SECURITY_DESCR, or STATUS_GENERIC_NOT_MAPPED.

Related Win32 Functions
AccessCheckByTypeAndAuditAlarm.

Remarks
SeAuditPrivilege is required to generate an audit alarm.

AccessCheckByTypeAndAuditAlarm exposes the full functionality of
ZwAccessCheckByTypeAndAuditAlarm.

The routine ZwAccessCheckByTypeAndAuditAlarm is only present in Windows 2000.

ZwAccessCheckByTypeResultList

ZwAccessCheckByTypeResultList checks whether a security descriptor grants the
requested access to an agent represented by a token object.
NTSYSAPI
NTSTATUS
NTAPI
ZwAccessCheckByTypeResultList(

IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN PSID PrincipalSelfSid,
IN HANDLE TokenHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_TYPE_LIST ObjectTypeList,
IN ULONG ObjectTypeListLength,
IN PGENERIC_MAPPING GenericMapping,
IN PPRIVILEGE_SET PrivilegeSet,
IN PULONG PrivilegeSetLength,

1996 CH15 12/2/99 9:29 AM Page 380

Security and Auditing: ZwAccessCheckByTypeResultList 381

OUT PACCESS_MASK GrantedAccessList,
OUT PULONG AccessStatusList
);

Parameters

SecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure against which access is checked.

PrincipalSelfSid
Points to a SID that is used to replace any occurrence in SecurityDescriptor of the
well-known SID PRINCIPAL_SELF.

TokenHandle
A handle to the token object representing the client requesting the operation.The
handle must grant TOKEN_QUERY access.

DesiredAccess
Specifies the access mask to be requested.This mask must have been mapped by the
MapGenericMask or RtlMapGenericMask function to contain no generic access rights.

ObjectTypeList
Points to an array of OBJECT_TYPE_LIST structures that identify the hierarchy of object
types for which to check access.

ObjectTypeListLength
The number of elements in the ObjectTypeList array.

GenericMapping
Points to the GENERIC_MAPPING structure associated with the object for which access is
being checked.

PrivilegeSet
Points to a PRIVILEGE_SET structure that the function fills with any privileges used to
perform the access validation.

PrivilegeSetLength
Specifies the size, in bytes, of PrivilegeSet.

GrantedAccessList
Points to a caller-allocated buffer or variable that receives an array of granted access
masks, one per element in the ObjectTypeList.

AccessStatusList
Points to a caller-allocated buffer or variable that receives an array of the results of the
access check, one per element in the ObjectTypeList.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,

1996 CH15 12/2/99 9:29 AM Page 381

Security and Auditing: ZwAccessCheckByTypeResultList382

STATUS_INVALID_HANDLE, STATUS_BUFFER_TOO_SMALL,
STATUS_NO_IMPERSONATION_TOKEN, STATUS_INVALID_SECURITY_DESCR,
STATUS_BAD_IMPERSONATION_LEVEL or STATUS_GENERIC_NOT_MAPPED.

Related Win32 Functions
AccessCheckByTypeResultList.

Remarks
AccessCheckByTypeResultList exposes the full functionality of
ZwAccessCheckByTypeResultList.

The routine ZwAccessCheckByTypeResultList is only present in Windows 2000.

ZwAccessCheckByTypeResultListAndAuditAlarm

ZwAccessCheckByTypeResultListAndAuditAlarm checks whether a security descriptor
grants the requested access to an agent represented by the impersonation token of the
current thread. If the security descriptor has a SACL with ACEs that apply to the
agent, any necessary audit messages are generated.
NTSYSAPI
NTSTATUS
NTAPI
ZwAccessCheckByTypeResultListAndAuditAlarm(

IN PUNICODE_STRING SubsystemName,
IN PVOID HandleId,
IN PUNICODE_STRING ObjectTypeName,
IN PUNICODE_STRING ObjectName,
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN PSID PrincipalSelfSid,
IN ACCESS_MASK DesiredAccess,
IN AUDIT_EVENT_TYPE AuditType,
IN ULONG Flags,
IN POBJECT_TYPE_LIST ObjectTypeList,
IN ULONG ObjectTypeListLength,
IN PGENERIC_MAPPING GenericMapping,
IN BOOLEAN ObjectCreation,
OUT PACCESS_MASK GrantedAccessList,
OUT PULONG AccessStatusList,
OUT PULONG GenerateOnClose
);

Parameters

SubsystemName
Points to a name identifying the subsystem generating the audit alarm.

HandleId
A value representing the client’s handle to the object. If the access is denied, this
parameter is ignored.

ObjectTypeName
Points to a string specifying the type of object to which the client is requesting access.

1996 CH15 12/2/99 9:29 AM Page 382

Security and Auditing: ZwAccessCheckByTypeResultListAndAuditAlarm 383

ObjectName
Points to a string specifying the name of the object to which the client gained access
or attempted to gain access.

SecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure for the object being accessed.

PrincipalSelfSid
Points to a SID that is used to replace any occurrence in SecurityDescriptor of the
well-known SID PRINCIPAL_SELF.

DesiredAccess
Specifies the access requested.This mask must have been mapped by the
MapGenericMask or RtlMapGenericMask function to contain no generic access rights.

AuditType
Specifies the type of audit to be generated. Permitted values are drawn from the
enumeration AUDIT_EVENT_TYPE.

typedef enum _AUDIT_EVENT_TYPE {
AuditEventObjectAccess,
AuditEventDirectoryServiceAccess

} AUDIT_EVENT_TYPE, *PAUDIT_EVENT_TYPE;

Flags
A bit array of flags that affect the behavior of the routine.The following flags are
defined:

AUDIT_ALLOW_NO_PRIVILEGE

ObjectTypeList
Points to an array of OBJECT_TYPE_LIST structures that identify the hierarchy of object
types for which to check access.

ObjectTypeListLength
The number of elements in the ObjectTypeList array.

GenericMapping
Points to the GENERIC_MAPPING structure associated with the object for which access is
being checked.

ObjectCreation
Specifies whether a new object will be created or an existing object will be opened.

GrantedAccessList
Points to a caller-allocated buffer or variable that receives an array of granted access
masks, one per element in the ObjectTypeList.

AccessStatusList
Points to a caller-allocated buffer or variable that receives an array of the results of the
access check, one per element in the ObjectTypeList.

1996 CH15 12/2/99 9:29 AM Page 383

Security and Auditing: ZwAccessCheckByTypeResultListAndAuditAlarm384

GenerateOnClose
Points to a variable that receives an indication of whether an audit alarm should be
generated when the handle is closed.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_INVALID_SECURITY_DESCR, or STATUS_GENERIC_NOT_MAPPED.

Related Win32 Functions
AccessCheckByTypeResultListAndAuditAlarm.

Remarks
SeAuditPrivilege is required to generate an audit alarm.

AccessCheckByTypeResultListAndAuditAlarm exposes the full functionality of
ZwAccessCheckByTypeResultListAndAuditAlarm.

The routine ZwAccessCheckByTypeResultListAndAuditAlarm is only present in
Windows 2000.

ZwAccessCheckByTypeResultListAndAuditAlarmByHandle

ZwAccessCheckByTypeResultListAndAuditAlarmByHandle checks whether a security
descriptor grants the requested access to an agent represented by a token. If the security
descriptor has a SACL with ACEs that apply to the agent, any necessary audit messages
are generated.
NTSYSAPI
NTSTATUS
NTAPI
ZwAccessCheckByTypeResultListAndAuditAlarmByHandle(

IN PUNICODE_STRING SubsystemName,
IN PVOID HandleId,
IN HANDLE TokenHandle,
IN PUNICODE_STRING ObjectTypeName,
IN PUNICODE_STRING ObjectName,
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN PSID PrincipalSelfSid,
IN ACCESS_MASK DesiredAccess,
IN AUDIT_EVENT_TYPE AuditType,
IN ULONG Flags,
IN POBJECT_TYPE_LIST ObjectTypeList,
IN ULONG ObjectTypeListLength,
IN PGENERIC_MAPPING GenericMapping,
IN BOOLEAN ObjectCreation,
OUT PACCESS_MASK GrantedAccessList,
OUT PULONG AccessStatusList,
OUT PULONG GenerateOnClose
);

Parameters

SubsystemName
Points to a name identifying the subsystem generating the audit alarm.

1996 CH15 12/2/99 9:29 AM Page 384

Security and Auditing: ZwAccessCheckByTypeResultListAndAuditAlarmByHandle 385

HandleId
A value representing the client’s handle to the object. If the access is denied, this
parameter is ignored.

TokenHandle
A handle to a token object representing the client.The handle must grant
TOKEN_QUERY access.

ObjectTypeName
Points to a string specifying the type of object to which the client is requesting access.

ObjectName
Points to a string specifying the name of the object to which the client gained access
or attempted to gain access.

SecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure for the object being accessed.

PrincipalSelfSid
Points to a SID that is used to replace any occurrence in SecurityDescriptor of the
well-known SID PRINCIPAL_SELF.

DesiredAccess
Specifies the access requested.This mask must have been mapped by the
MapGenericMask or RtlMapGenericMask function to contain no generic access rights.

AuditType
Specifies the type of audit to be generated. Permitted values are drawn from the
enumeration AUDIT_EVENT_TYPE.

typedef enum _AUDIT_EVENT_TYPE {
AuditEventObjectAccess,
AuditEventDirectoryServiceAccess

} AUDIT_EVENT_TYPE, *PAUDIT_EVENT_TYPE;

Flags
A bit array of flags that affect the behavior of the routine.The following flags are
defined:

AUDIT_ALLOW_NO_PRIVILEGE

ObjectTypeList
Points to an array of OBJECT_TYPE_LIST structures that identify the hierarchy of object
types for which to check access.

ObjectTypeListLength
The number of elements in the ObjectTypeList array.

GenericMapping
Points to the GENERIC_MAPPING structure associated with the object for which access is
being checked.

1996 CH15 12/2/99 9:29 AM Page 385

Security and Auditing: ZwAccessCheckByTypeResultListAndAuditAlarmByHandle386

ObjectCreation
Specifies whether a new object will be created or an existing object will be opened.

GrantedAccessList
Points to a caller-allocated buffer or variable that receives an array of granted access
masks, one per element in the ObjectTypeList.

AccessStatusList
Points to a caller-allocated buffer or variable that receives an array of the results of the
access check, one per element in the ObjectTypeList.

GenerateOnClose
Points to a variable that receives an indication of whether an audit alarm should be
generated when the handle is closed.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_INVALID_SECURITY_DESCR, or STATUS_GENERIC_NOT_MAPPED.

Related Win32 Functions
AccessCheckByTypeResultListAndAuditAlarmByHandle.

Remarks
SeAuditPrivilege is required to generate an audit alarm.

AccessCheckByTypeResultListAndAuditAlarmByHandle exposes the full functionality
of ZwAccessCheckByTypeResultListAndAuditAlarmByHandle.

The routine ZwAccessCheckByTypeResultListAndAuditAlarmByHandle is only present
in Windows 2000.

ZwOpenObjectAuditAlarm

ZwOpenObjectAuditAlarm generates an audit alarm describing the opening of a handle
to an object.
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenObjectAuditAlarm(

IN PUNICODE_STRING SubsystemName,
IN PVOID *HandleId,
IN PUNICODE_STRING ObjectTypeName,
IN PUNICODE_STRING ObjectName,
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN HANDLE TokenHandle,
IN ACCESS_MASK DesiredAccess,
IN ACCESS_MASK GrantedAccess,
IN PPRIVILEGE_SET Privileges OPTIONAL,
IN BOOLEAN ObjectCreation,
IN BOOLEAN AccessGranted,
OUT PBOOLEAN GenerateOnClose
);

1996 CH15 12/2/99 9:29 AM Page 386

Security and Auditing: ZwOpenObjectAuditAlarm 387

Parameters

SubsystemName
Points to a name identifying the subsystem generating the audit alarm.

HandleId
Points to a value representing the client’s handle to the object. If the access is denied,
this parameter is ignored.

ObjectTypeName
Points to a string specifying the type of object to which the client is requesting access.

ObjectName
Points to a string specifying the name of the object to which the client gained access
or attempted to gain access.

SecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure for the object being accessed.

TokenHandle
A handle to the token object representing the client requesting the operation.The
handle must grant TOKEN_QUERY access.

DesiredAccess
Specifies the access requested.This mask must have been mapped by the
MapGenericMask or RtlMapGenericMask function to contain no generic access rights.

GrantedAccess
Specifies the access granted.

Privileges
Optionally points to a PRIVILEGE_SET structure that specifies the set of privileges
required for the access.This parameter can be a null pointer.

ObjectCreation
Specifies whether a new object was created or an existing object was opened.

AccessGranted
Specifies whether access was granted or denied.

GenerateOnClose
Points to a variable that receives an indication of whether an audit alarm should be
generated when the handle is closed.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_PRIVILEGE_NOT_HELD,
STATUS_INVALID_SECURITY_DESCR, STATUS_BAD_IMPERSONATION_LEVEL or

1996 CH15 12/2/99 9:29 AM Page 387

Security and Auditing: ZwOpenObjectAuditAlarm388

STATUS_GENERIC_NOT_MAPPED.

Related Win32 Functions
ObjectOpenAuditAlarm.

Remarks
SeAuditPrivilege is required to generate an audit alarm.

ObjectOpenAuditAlarm exposes the full functionality of ZwOpenObjectAuditAlarm.

ZwCloseObjectAuditAlarm

ZwCloseObjectAuditAlarm generates an audit alarm describing the closing of a handle
to an object.
NTSYSAPI
NTSTATUS
NTAPI
ZwCloseObjectAuditAlarm(

IN PUNICODE_STRING SubsystemName,
IN PVOID HandleId,
IN BOOLEAN GenerateOnClose
);

Parameters

SubsystemName
Points to a name identifying the subsystem generating the audit alarm.

HandleId
Specifies a value representing the client’s handle to the object.

GenerateOnClose
Specifies whether an audit alarm should be generated when the handle is closed.

Return Value
Returns STATUS_SUCCESS or an error status... such as STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions
ObjectCloseAuditAlarm.

Remarks
SeAuditPrivilege is required to generate an audit alarm.

ObjectCloseAuditAlarm exposes the full functionality of ZwCloseObjectAuditAlarm.

1996 CH15 12/2/99 9:29 AM Page 388

Security and Auditing: ZwDeleteObjectAuditAlarm 389

ZwDeleteObjectAuditAlarm

ZwDeleteObjectAuditAlarm generates an audit alarm describing the deletion of an
object.
NTSYSAPI
NTSTATUS
NTAPI
ZwDeleteObjectAuditAlarm(

IN PUNICODE_STRING SubsystemName,
IN PVOID HandleId,
IN BOOLEAN GenerateOnClose
);

Parameters

SubsystemName
Points to a name identifying the subsystem generating the audit alarm.

HandleId
Specifies a value representing the client’s handle to the object.

GenerateOnClose
Specifies whether an audit alarm should be generated when the handle is closed.

Return Value
Returns STATUS_SUCCESS or an error status... such as STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions
ObjectDeleteAuditAlarm.

Remarks
SeAuditPrivilege is required to generate an audit alarm.

ObjectDeleteAuditAlarm exposes the full functionality of
ZwDeleteObjectAuditAlarm.

1996 CH15 12/2/99 9:29 AM Page 389

1996 CH15 12/2/99 9:29 AM Page 390

16
Plug and Play and

Power Management

The system services described in this chapter support plug and play and power
management.

ZwRequestWakeupLatency

ZwRequestWakeupLatency controls the speed with which the system should be able to
enter the working state.
NTSYSAPI
NTSTATUS
NTAPI
ZwRequestWakeupLatency(

IN LATENCY_TIME Latency
);

Parameters

Latency
Specifies the desired latency requirement.The permitted values are drawn from the
enumeration LATENCY_TIME:

typedef enum {
LT_DONT_CARE,
LT_LOWEST_LATENCY

} LATENCY_TIME;

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
RequestWakeupLatency.

Remarks
RequestWakeupLatency exposes the full functionality of ZwRequestWakeupLatency.

The routine ZwRequestWakeupLatency is only present in Windows 2000.

1996 CH16 12/2/99 9:29 AM Page 391

Plug and Play and Power Management: ZwRequestDeviceWakeup392

ZwRequestDeviceWakeup

ZwRequestDeviceWakeup issues a wakeup request to a device.
NTSYSAPI
NTSTATUS
NTAPI
ZwRequestDeviceWakeup(

IN HANDLE DeviceHandle
);

Parameters

DeviceHandle
A handle to a file object representing a device.The handle need not grant any specific
access.

Return Value
Returns STATUS_SUCCESS or an error status, ZwRequestDeviceWakeup such as
STATUS_INVALID_HANDLE or STATUS_NOT_IMPLEMENTED.

Related Win32 Functions
RequestDeviceWakeup.

Remarks

RequestDeviceWakeup exposes the full functionality of ZwRequestDeviceWakeup.

The routine ZwRequestDeviceWakeup is only present in Windows 2000.

Device wakeup requests are not implemented in early versions of Windows 2000.

ZwCancelDeviceWakeupRequest

ZwCancelDeviceWakeupRequest cancels a previously issued device wakeup request.
NTSYSAPI
NTSTATUS
NTAPI
ZwCancelDeviceWakeupRequest(

IN HANDLE DeviceHandle
);

Parameters

DeviceHandle
A handle to a file object representing a device.The handle need not grant any specific
access.

Return Value

1996 CH16 12/2/99 9:29 AM Page 392

Plug and Play and Power Management: ZwIsSystemResumeAutomatic 393

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE or
STATUS_NOT_IMPLEMENTED.

Related Win32 Functions
CancelDeviceWakeupRequest.

Remarks
CancelDeviceWakeupRequest exposes the full functionality of
ZwCancelDeviceWakeupRequest.

The routine ZwCancelDeviceWakeupRequest is only present in Windows 2000.

Device wakeup requests are not implemented in early versions of Windows 2000.

ZwIsSystemResumeAutomatic

ZwIsSystemResumeAutomatic reports whether the system was resumed to handle a
scheduled event or was resumed in response to user activity.
NTSYSAPI
BOOLEAN
NTAPI
ZwIsSystemResumeAutomatic(

VOID
);

Parameters
None.

Return Value
Returns TRUE or FALSE.

Related Win32 Functions
IsSystemResumeAutomatic.

Remarks
IsSystemResumeAutomatic exposes the full functionality of
ZwIsSystemResumeAutomatic.

The routine ZwIsSystemResumeAutomatic is only present in Windows 2000.

1996 CH16 12/2/99 9:29 AM Page 393

Plug and Play and Power Management: ZwSetThreadExecutionState394

ZwSetThreadExecutionState

ZwSetThreadExecutionState sets the execution requirements of the current thread.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetThreadExecutionState(

IN EXECUTION_STATE ExecutionState,
OUT PEXECUTION_STATE PreviousExecutionState
);

Parameters

ExecutionState
Specifies the execution requirements of the current thread.The permitted values are
any combination of the following flags:

ES_SYSTEM_REQUIRED
ES_DISPLAY_REQUIRED
ES_CONTINUOUS

PreviousExecutionState
Points to a variable that receives the previous execution requirements of the current
thread.The value returned is zero or a combination of the following flags:

ES_SYSTEM_REQUIRED
ES_DISPLAY_REQUIRED
ES_USER_PRESENT
ES_CONTINUOUS

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
SetThreadExecutionState.

Remarks
SetThreadExecutionState exposes the full functionality of
ZwSetThreadExecutionState.

The routine ZwSetThreadExecutionState is only present in Windows 2000.

ZwGetDevicePowerState

ZwGetDevicePowerState retrieves the power state of a device.
NTSYSAPI
NTSTATUS
NTAPI
ZwGetDevicePowerState(

IN HANDLE DeviceHandle,
OUT PDEVICE_POWER_STATE DevicePowerState
);

1996 CH16 12/2/99 9:29 AM Page 394

Plug and Play and Power Management: ZwSetSystemPowerState 395

Parameters

DeviceHandle
A handle to a file object representing a device.The handle need not grant any specific
access.

DevicePowerState
Points to a variable that receives the power state of the device.The values are drawn
from the enumeration DEVICE_POWER_STATE:

typedef enum _DEVICE_POWER_STATE {
PowerDeviceUnspecified = 0,
PowerDeviceD0,
PowerDeviceD1,
PowerDeviceD2,
PowerDeviceD3

} DEVICE_POWER_STATE, *PDEVICE_POWER_STATE;

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE.

Related Win32 Functions
GetDevicePowerState.

Remarks
GetDevicePowerState exposes most of the functionality of ZwGetDevicePowerState.

The routine ZwGetDevicePowerState is only present in Windows 2000.

ZwSetSystemPowerState

ZwSetSystemPowerState sets the power state of the system.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetSystemPowerState(

IN POWER_ACTION SystemAction,
IN SYSTEM_POWER_STATE MinSystemState,
IN ULONG Flags
);

Parameters

SystemAction
Specifies the power action to perform.The permitted values are drawn from the
enumeration POWER_ACTION:

typedef enum _POWER_ACTION {
PowerActionNone,
PowerActionReserved,
PowerActionSleep,
PowerActionHibernate,
PowerActionShutdown,

1996 CH16 12/2/99 9:29 AM Page 395

Plug and Play and Power Management: ZwSetSystemPowerState396

PowerActionShutdownReset,
PowerActionShutdownOff

} POWER_ACTION, *PPOWER_ACTION;

MinSystemState
Specifies the minimum power state to enter as a result of performing the action.
The permitted values are drawn from the enumeration SYSTEM_POWER_STATE:

typedef enum _SYSTEM_POWER_STATE {
PowerSystemUnspecified = 0,
PowerSystemWorking,
PowerSystemSleeping1,
PowerSystemSleeping2,
PowerSystemSleeping3,
PowerSystemHibernate,
PowerSystemShutdown

} SYSTEM_POWER_STATE, *PSYSTEM_POWER_STATE;

Flags
Qualifies the SystemAction. Defined values include:

POWER_ACTION_QUERY_ALLOWED
POWER_ACTION_UI_ALLOWED
POWER_ACTION_OVERRIDE_APPS
POWER_ACTION_LOCK_CONSOLE
POWER_ACTION_DISABLE_WAKES
POWER_ACTION_CRITICAL

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_ALREADY_COMMITTED, or STATUS_CANCELLED.

Related Win32 Functions
None.

Remarks
The routine ZwSetSystemPowerState is only present in Windows 2000.

SeShutdownPrivilege is required to set the system power state.

ZwInitiatePowerAction

ZwInitiatePowerAction initiates a power action.
NTSYSAPI
NTSTATUS
NTAPI
ZwInitiatePowerAction(

IN POWER_ACTION SystemAction,
IN SYSTEM_POWER_STATE MinSystemState,
IN ULONG Flags,
IN BOOLEAN Asynchronous
);

Parameters

1996 CH16 12/2/99 9:29 AM Page 396

Plug and Play and Power Management: ZwInitiatePowerAction 397

SystemAction
Specifies the power action to perform.The permitted values are drawn from the
enumeration POWER_ACTION:

typedef enum _POWER_ACTION {
PowerActionNone,
PowerActionReserved,
PowerActionSleep,
PowerActionHibernate,
PowerActionShutdown,
PowerActionShutdownReset,
PowerActionShutdownOff

} POWER_ACTION, *PPOWER_ACTION;

MinSystemState
Specifies the minimum power state to enter as a result of performing the action.
The permitted values are drawn from the enumeration SYSTEM_POWER_STATE:

typedef enum _SYSTEM_POWER_STATE {
PowerSystemUnspecified = 0,
PowerSystemWorking,
PowerSystemSleeping1,
PowerSystemSleeping2,
PowerSystemSleeping3,
PowerSystemHibernate,
PowerSystemShutdown

} SYSTEM_POWER_STATE, *PSYSTEM_POWER_STATE;

Flags
Qualifies the SystemAction. Defined values include:

POWER_ACTION_QUERY_ALLOWED
POWER_ACTION_UI_ALLOWED
POWER_ACTION_OVERRIDE_APPS
POWER_ACTION_LOCK_CONSOLE
POWER_ACTION_DISABLE_WAKES
POWER_ACTION_CRITICAL

Asynchronous
Specifies whether the routine should return immediately.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions
None.

Remarks
The routine ZwInitiatePowerAction is only present in Windows 2000.

SeShutdownPrivilege is required to initiate a power action.

1996 CH16 12/2/99 9:29 AM Page 397

Plug and Play and Power Management: ZwPowerInformation398

ZwPowerInformation

ZwPowerInformation sets or queries power information.
NTSYSAPI
NTSTATUS
NTAPI
ZwPowerInformation(

IN POWER_INFORMATION_LEVEL PowerInformationLevel,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength
);

Parameters

PowerInformationLevel
The code for the information level to be queried or set. Permitted values are drawn
from the enumeration POWER_INFORMATION_LEVEL, described in the following section.

InputBuffer
Points to a caller-allocated buffer or variable that contains the data required to perform
the operation.This parameter can be null if the PowerInformationLevel parameter
specifies a level that does not require input data.

InputBufferLength
The size in bytes of InputBuffer.

OutputBuffer
Points to a caller-allocated buffer or variable that receives the operation’s output data.
This parameter can be null if the PowerInformationLevel parameter specifies a level
that does not produce output data.

OutputBufferLength
The size in bytes of OutputBuffer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD or
STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions
None.

Remarks
The routine ZwPowerInformation is only present in Windows 2000.

SeCreatePagefilePrivilege is required to set the SystemReserveHiberFile.
SeShutdownPrivilege is required to set any other settable information level.

1996 CH16 12/2/99 9:29 AM Page 398

Plug and Play and Power Management: SystemPowerCapabilities 399

POWER_INFORMATION_LEVEL
typedef enum {

SystemPowerPolicyAc,
SystemPowerPolicyDc,
VerifySystemPolicyAc,
VerifySystemPolicyDc,
SystemPowerCapabilities,
SystemBatteryState,
SystemPowerStateHandler,
ProcessorStateHandler,
SystemPowerPolicyCurrent,
AdministratorPowerPolicy,
SystemReserveHiberFile,
ProcessorInformation,
SystemPowerInformation

} POWER_INFORMATION_LEVEL;

SystemPowerPolicyAc, SystemPowerPolicyDc,
SystemPowerPolicyCurrent
typedef struct _SYSTEM_POWER_POLICY {

ULONG Revision;
POWER_ACTION_POLICY PowerButton;
POWER_ACTION_POLICY SleepButton;
POWER_ACTION_POLICY LidClose;
SYSTEM_POWER_STATE LidOpenWake;
ULONG Reserved1;
POWER_ACTION_POLICY Idle;
ULONG IdleTimeout;
UCHAR IdleSensitivity;
UCHAR Reserved2[3];
SYSTEM_POWER_STATE MinSleep;
SYSTEM_POWER_STATE MaxSleep;
SYSTEM_POWER_STATE ReducedLatencySleep;
ULONG WinLogonFlags;
ULONG Reserved3;
ULONG DozeS4Timeout;
ULONG BroadcastCapacityResolution;
SYSTEM_POWER_LEVEL DischargePolicy[NUM_DISCHARGE_POLICIES];
ULONG VideoTimeout;
ULONG VideoReserved[4];
ULONG SpindownTimeout;
BOOLEAN OptimizeForPower;
UCHAR FanThrottleTolerance;
UCHAR ForcedThrottle;
UCHAR MinThrottle;
POWER_ACTION_POLICY OverThrottled;

} SYSTEM_POWER_POLICY, *PSYSTEM_POWER_POLICY;

SystemPowerCapabilities
typedef struct _SYSTEM_POWER_CAPABILITIES {

BOOLEAN PowerButtonPresent;
BOOLEAN SleepButtonPresent;
BOOLEAN LidPresent;
BOOLEAN SystemS1;
BOOLEAN SystemS2;

1996 CH16 12/2/99 9:29 AM Page 399

Plug and Play and Power Management: SystemPowerCapabilities400

BOOLEAN SystemS3;
BOOLEAN SystemS4;
BOOLEAN SystemS5;
BOOLEAN HiberFilePresent;
BOOLEAN FullWake;
UCHAR Reserved1[3];
BOOLEAN ThermalControl;
BOOLEAN ProcessorThrottle;
UCHAR ProcessorMinThrottle;
UCHAR ProcessorThrottleScale;
UCHAR Reserved2[4];
BOOLEAN DiskSpinDown;
UCHAR Reserved3[8];
BOOLEAN SystemBatteriesPresent;
BOOLEAN BatteriesAreShortTerm;
BATTERY_REPORTING_SCALE BatteryScale[3];
SYSTEM_POWER_STATE AcOnLineWake;
SYSTEM_POWER_STATE SoftLidWake;
SYSTEM_POWER_STATE RtcWake;
SYSTEM_POWER_STATE MinDeviceWakeState;
SYSTEM_POWER_STATE DefaultLowLatencyWake;

} SYSTEM_POWER_CAPABILITIES, *PSYSTEM_POWER_CAPABILITIES;

SystemBatteryState
typedef struct _SYSTEM_BATTERY_STATE {_

BOOLEAN AcOnLine;
BOOLEAN BatteryPresent;
BOOLEAN Charging;
BOOLEAN Discharging;
BOOLEAN Reserved[4];
ULONG MaxCapacity;
ULONG RemainingCapacity;
ULONG Rate;
ULONG EstimatedTime;
ULONG DefaultAlert1;
ULONG DefaultAlert2;

} SYSTEM_BATTERY_STATE, *PSYSTEM_BATTERY_STATE;

SystemPowerStateHandler
typedef struct _POWER_STATE_HANDLER {

POWER_STATE_HANDLER_TYPE Type;
BOOLEAN RtcWake;
UCHAR Reserved[3];
PENTER_STATE_HANDLER Handler;
PVOID Context;

} POWER_STATE_HANDLER, *PPOWER_STATE_HANDLER;

ProcessorStateHandler
typedef struct _PROCESSOR_STATE_HANDLER {

UCHAR ThrottleScale;
BOOLEAN ThrottleOnIdle;
PSET_PROCESSOR_THROTTLE SetThrottle;

1996 CH16 12/2/99 9:29 AM Page 400

Plug and Play and Power Management: ZwPlugPlayControl 401

ULONG NumIdleHandlers;
PROCESSOR_IDLE_HANDLER_INFO IdleHandler[MAX_IDLE_HANDLERS];

} PROCESSOR_STATE_HANDLER, *PPROCESSOR_STATE_HANDLER;

AdministratorPowerPolicy
typedef struct _ADMINISTRATOR_POWER_POLICY {

SYSTEM_POWER_STATE MinSleep;
SYSTEM_POWER_STATE MaxSleep;
ULONG MinVideoTimeout;
ULONG MaxVideoTimeout;
ULONG MinSpindownTimeout;
ULONG MaxSpindownTimeout;

} ADMINISTRATOR_POWER_POLICY, *PADMINISTRATOR_POWER_POLICY;

ProcessorInformation
typedef struct _PROCESSOR_POWER_INFORMATION {

ULONG Number;
ULONG MaxMhz;
ULONG CurrentMhz;
ULONG MhzLimit;
ULONG MaxIdleState;
ULONG CurrentIdleState;

} PROCESSOR_POWER_INFORMATION, *PPROCESSOR_POWER_INFORMATION;

SystemPowerInformation
typedef struct _SYSTEM_POWER_INFORMATION {

ULONG MaxIdlenessAllowed;
ULONG Idleness;
ULONG TimeRemaining;
UCHAR CoolingMode;

} SYSTEM_POWER_INFORMATION, *PSYSTEM_POWER_INFORMATION;

ZwPlugPlayControl
ZwPlugPlayControl performs a plug and play control operation.
NTSYSAPI
NTSTATUS
NTAPI
ZwPlugPlayControl(

IN ULONG ControlCode,
IN OUT PVOID Buffer,
IN ULONG BufferLength
);

Parameters

ControlCode
The control code for operation to be performed.

1996 CH16 12/2/99 9:29 AM Page 401

Plug and Play and Power Management: ZwPlugPlayControl402

Buffer
Points to a caller-allocated buffer or variable that contains the data required to perform
the operation and receives the result of the operation.

Length
The size, in bytes, of the buffer pointed to by Buffer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_NOT_IMPLEMENTED,
STATUS_PRIVILEGE_NOT_HELD, STATUS_BUFFER_TOO_SMALL, or
STATUS_INVALID_PARAMETER_MIX.

Related Win32 Functions
None.

Remarks
SeTcbPrivilege is required to perform a plug and play control operation.

Windows NT 4.0 has a version of ZwPlugPlayControl that does not require
SeTcbPrivilege and that has an additional (optional) parameter.

ZwGetPlugPlayEvent

ZwGetPlugPlayEvent gets a plug and play event.
NTSYSAPI
NTSTATUS
NTAPI
ZwGetPlugPlayEvent(

IN ULONG Reserved1,
IN ULONG Reserved2,
OUT PVOID Buffer,
IN ULONG BufferLength
);

Parameters

Reserved1
Not used.

Reserved2
Not used.

Buffer
Points to a caller-allocated buffer or variable that receives the plug and play event.The
information return to the buffer begins with a PLUGPLAY_NOTIFICATION_HEADER struc-
ture:

typedef struct _PLUGPLAY_NOTIFICATION_HEADER {
USHORT Version;
USHORT Size;
GUID Event;

} PLUGPLAY_NOTIFICATION_HEADER, *PPLUGPLAY_NOTIFICATION_HEADER;

1996 CH16 12/2/99 9:29 AM Page 402

Plug and Play and Power Management: ZwGetPlugPlayEvent 403

BufferLength
The size in bytes of buffer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions
None.

Remarks
SeTcbPrivilege is required to get plug and play events.

1996 CH16 12/2/99 9:29 AM Page 403

1996 CH16 12/2/99 9:29 AM Page 404

A
Miscellany

This chapter describes the system services that do not appear in any other chapter.

ZwRaiseException

ZwRaiseException raises an exception.
NTSYSAPI
NTSTATUS
NTAPI
ZwRaiseException(

IN PEXCEPTION_RECORD ExceptionRecord,
IN PCONTEXT Context,
IN BOOLEAN SearchFrames
);

Parameters

ExceptionRecord
Points to a structure that describes the exception.

Context
Points to a structure that describes the execution state at the time of the exception.

SearchFrames
Specifies whether frame-based exception handlers should be given a chance to handle
the exception.

Return Value
Returns an error status or does not return at all.

Related Win32 Functions
RaiseException.

1996 App A 12/1/99 12:32 PM Page 405

Miscellany: ZwRaiseException406

Remarks
If any of the pointer arguments are invalid, ZwRaiseException returns an error status;
otherwise, the subsequent flow of control is dependent on the actions of exception
handlers and debuggers.

Exceptions are discussed further in Chapter 20,“Exceptions and Debugging.”

ZwContinue

ZwContinue resumes execution of a saved execution context.
NTSYSAPI
NTSTATUS
NTAPI
ZwContinue(

IN PCONTEXT Context,
IN BOOLEAN TestAlert
);

Parameters

Context
Points to a structure describing the execution state that should be restored prior to
continuing execution.

TestAlert
Specifies whether ZwTestAlert should be called to clear the alerted flag and to allow
the delivery of user APCs.

Return Value
Returns an error status or does not return at all.

Related Win32 Functions
None.

Remarks
If any of the pointer arguments are invalid, ZwContinue returns an error status; other-
wise, execution will continue from the execution context specified by the Context
argument.

Exceptions are discussed further in Chapter 20.

ZwW32Call

ZwW32Call calls one of a predefined set of user mode functions.
NTSYSAPI
NTSTATUS
NTAPI
ZwW32Call(

IN ULONG RoutineIndex,

1996 App A 12/1/99 12:32 PM Page 406

Miscellany: ZwW32Call 407

IN PVOID Argument,
IN ULONG ArgumentLength,
OUT PVOID *Result OPTIONAL,
OUT PULONG ResultLength OPTIONAL
);

Parameters

RoutineIndex
Specifies an index into an array of routines pointed to by a field in the PEB.

Argument
Points to a caller-allocated buffer or variable that contains data to be passed as an
argument to the routine.This data will be copied to the user mode stack.

ArgumentLength
The size, in bytes, of the data pointed to by Argument.

Result
Optionally points to a caller-allocated buffer or variable that receives results from the
routine.

ResultLength
Optionally points to a variable that specifies the size, in bytes, of the data pointed to by
Result and receives the size of the data actually returned.

Return Value
Returns an error status, such as STATUS_NOT_IMPLEMENTED, or the value returned by
the called routine.

Related Win32 Functions
None.

Remarks
The calling thread must have initialized its Win32 state; otherwise, ZwW32Call returns
STATUS_NOT_IMPLEMENTED.

ZwW32Call is only present in Windows NT 4.0.

If the process is a client of win32k.sys, ZwW32Call saves the current state (on the
CallbackStack) and arranges that upon return to user mode; the routine
NTDLL!_KiUserCallbackDispatcher@12 will be run with the arguments
RoutineIndex, Argument and ArgumentLength.This routine uses the RoutineIndex as
an index into a dispatch table stored in the PEB and invokes the callback routine
found there with two arguments: Argument and ArgumentLength.

If this routine returns, NTDLL!_KiUserCallbackDispatcher@12 invokes
ZwCallbackReturn with a zero length result and whatever NTSTATUS value the callback
routine returned. ZwCallbackReturn restores the state from the CallbackStack so that
when the system service returns, it will return to its original caller.

1996 App A 12/1/99 12:32 PM Page 407

Miscellany: ZwW32Call408

Most callback routines do not return, but instead invoke ZwCallbackReturn explicitly
so that they can return a pointer to a buffer of results to their caller (via Result and
ResultLength).

ZwCallbackReturn

ZwCallbackReturn returns from a function called by ZwW32Call.
NTSYSAPI
NTSTATUS
NTAPI
ZwCallbackReturn(

IN PVOID Result OPTIONAL,
IN ULONG ResultLength,
IN NTSTATUS Status
);

Parameters

Result
Optionally points to a caller-allocated buffer or variable that contains the results to be
returned to the caller of ZwW32Call.

ResultLength
The size, in bytes, of the data pointed to by Result.

Status
Specifies a status value to be returned to the caller of ZwW32Call as the return value.

Return Value
Returns an error status, such as STATUS_NO_CALLBACK_ACTIVE, or does not return at all.

Related Win32 Functions
None.

Remarks
If the process is a client of win32k.sys, ZwW32Call saves the current state (on the
CallbackStack) and arranges that upon return to user mode the routine,
NTDLL!_KiUserCallbackDispatcher@12 will be run with the arguments
RoutineIndex, Argument and ArgumentLength.This routine uses the RoutineIndex as
an index into a dispatch table stored in the PEB and invokes the callback routine
found there with two arguments: Argument and ArgumentLength.

If this routine returns, NTDLL!_KiUserCallbackDispatcher@12 invokes
ZwCallbackReturn with a zero length result and whatever NTSTATUS value the callback
routine returned. ZwCallbackReturn restores the state from the CallbackStack so that
when the system service returns, it will return to its original caller.

1996 App A 12/1/99 12:32 PM Page 408

Miscellany: ZwSetHighWaitLowThread 409

Most callback routines do not return, but instead invoke ZwCallbackReturn explicitly
so that they can return a pointer to a buffer of results to their caller (via Result and
ResultLength).

ZwSetLowWaitHighThread

ZwSetLowWaitHighThread effectively invokes ZwSetLowWaitHighEventPair on the
event pair of the thread.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetLowWaitHighThread(

VOID
);

Parameters
None.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_NO_EVENT_PAIR.

Related Win32 Functions
None.

Remarks
ZwSetLowWaitHighThread is only present in Windows NT 4.0.

Even in Windows NT 4.0 it is difficult to call ZwSetLowWaitHighThread because three
of the four entry points purporting to refer to this system service actually invoke a
different routine.

NTDLL!ZwSetLowWaitHighThread, NTDLL!NtSetLowWaitHighThread and
NTOSKRNL!ZwSetLowWaitHighThread all execute software interrupt 0x2c
(KiSetLowWaitHighThread), which goes through the motions of system service dis-
patching but always returns STATUS_NO_EVENT_PAIR.

NTOSKRNL!NtSetLowWaitHighThread is equivalent to calling
ZwSetLowWaitHighEventPair on the event pair previously associated with the current
thread via a call to ZwSetInformationThread.

ZwSetHighWaitLowThread

ZwSetHighWaitLowThread effectively invokes ZwSetHighWaitLowEventPair on the
event pair of the thread.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetHighWaitLowThread(

VOID
);

1996 App A 12/1/99 12:32 PM Page 409

Miscellany: ZwSetHighWaitLowThread410

Parameters
None.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_NO_EVENT_PAIR.

Related Win32 Functions
None.

Remarks
ZwSetHighWaitLowThread is only present in Windows NT 4.0.

Even in Windows NT 4.0 it is difficult to call ZwSetHighWaitLowThread, because three
of the four entry points this system service actually invoke a different routine.

NTDLL!ZwSetHighWaitLowThread, NTDLL!NtSetHighWaitLowThread and
NTOSKRNL!ZwSetHighWaitLowThread all execute software interrupt 0x2b
(KiCallbackReturn).

NTOSKRNL!NtSetHighWaitLowThread is equivalent to calling
ZwSetLowWaitHighEventPair on the event pair previously associated with the current
thread via a call to ZwSetInformationThread.

ZwLoadDriver

ZwLoadDriver loads a device driver.
NTSYSAPI
NTSTATUS
NTAPI
ZwLoadDriver(

IN PUNICODE_STRING DriverServiceName
);

Parameters

DriverServiceName
Specifies the registry key name where the driver configuration information is stored.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_CONFLICTING_ADDRESSES, STATUS_INVALID_IMAGE_FORMAT,
STATUS_PROCEDURE_NOT_FOUND, STATUS_IMAGE_ALREADY_LOADED,
STATUS_IMAGE_CHECKSUM_MISMATCH, STATUS_IMAGE_MP_UP_MISMATCH,
STATUS_DRIVER_ORDINAL_NOT_FOUND, STATUS_DRIVER_ENTRYPOINT_NOT_FOUND,
STATUS_DRIVER_UNABLE_TO_LOAD, or STATUS_ILL_FORMED_SERVICE_ENTRY.

1996 App A 12/1/99 12:32 PM Page 410

Miscellany: ZwUnloadDriver 411

Related Win32 Functions
None.

Remarks
SeLoadDriverPrivilege is required to load a driver.

The Win32 function StartService directs the Service Control Manager process to
execute this function on behalf of the caller.

The Service Control Manager process provides a DriverServiceName of the form
“\Registry\Machine\System\CurrentControlSet\Services\Tcpip.”

ZwUnloadDriver

ZwUnloadDriver unloads a device driver.
NTSYSAPI
NTSTATUS
NTAPI
ZwUnloadDriver(

IN PUNICODE_STRING DriverServiceName
);

Parameters

DriverServiceName
Specifies the registry key name where the driver configuration information is stored.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_ILL_FORMED_SERVICE_ENTRY, or STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
None.

Remarks
SeLoadDriverPrivilege is required to unload a driver.

The Win32 function ControlService directs the Service Control Manager process to
execute this function on behalf of the caller.

The Service Control Manager process provides a DriverServiceName of the form
“\Registry\Machine\System\CurrentControlSet\Services\Tcpip.”

1996 App A 12/1/99 12:32 PM Page 411

Miscellany: ZwFlushInstructionCache412

ZwFlushInstructionCache

ZwFlushInstructionCache flushes the instruction cache of a process.
NTSYSAPI
NTSTATUS
NTAPI
ZwFlushInstructionCache(

IN HANDLE ProcessHandle,
IN PVOID BaseAddress OPTIONAL,
IN ULONG FlushSize
);

Parameters

ProcessHandle
A handle to a process.The handle must grant PROCESS_VM_WRITE access.

BaseAddress
Optionally specifies the base of the region to be flushed.

FlushSize
The size of the region to be flushed if BaseAddress is not a null pointer.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
FlushInstructionCache.

Remarks
None.

ZwFlushWriteBuffer

ZwFlushWriteBuffer flushes the write buffer.
NTSYSAPI
NTSTATUS
NTAPI
ZwFlushWriteBuffer(

VOID
);

Parameters
None.

Return Value
Returns STATUS_SUCCESS.

1996 App A 12/1/99 12:32 PM Page 412

Miscellany: ZwSetDefaultLocale 413

Related Win32 Functions
None.

Remarks
ZwFlushWriteBuffer invokes HAL!_KeFlushWriteBuffer@0 which, in the default
HAL, just returns.

ZwQueryDefaultLocale

ZwQueryDefaultLocale retrieves the default locale.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryDefaultLocale(

IN BOOLEAN ThreadOrSystem,
OUT PLCID Locale
);

Parameters

ThreadOrSystem
Specifies whether the thread (if true) or system (if false) locale identifier should be
queried.

Locale
Points to a variable that receives the locale identifier.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
None.

ZwSetDefaultLocale

ZwSetDefaultLocale sets the default locale.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetDefaultLocale(

IN BOOLEAN ThreadOrSystem,
IN LCID Locale
);

1996 App A 12/1/99 12:32 PM Page 413

Miscellany: ZwSetDefaultLocale414

Parameters

ThreadOrSystem
Specifies whether the thread (if true) or system (if false) locale id should be set.

Locale
The locale id.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
None.

ZwQueryDefaultUILanguage

ZwQueryDefaultUILanguage retrieves the default user interface language identifier.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryDefaultUILanguage(

OUT PLANGID LanguageId
);

Parameters

LanguageId
Points to a variable that receives the language identifier.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
The routine ZwQueryDefaultUILanguage is only present in Windows 2000.

1996 App A 12/1/99 12:32 PM Page 414

Miscellany: ZwQueryInstallUILanguage 415

ZwSetDefaultUILanguage

ZwSetDefaultUILanguage sets the default user interface language identifier.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetDefaultUILanguage(

IN LANGID LanguageId
);

Parameters

LanguageId
The language identifier.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
The routine ZwSetDefaultUILanguage is only present in Windows 2000.

ZwQueryInstallUILanguage

ZwQueryInstallUILanguage retrieves the installation user interface language identifier.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryInstallUILanguage(

OUT PLANGID LanguageId
);

Parameters

LanguageId
Points to a variable that receives the language identifier.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
The routine ZwQueryInstallUILanguage is only present in Windows 2000.

1996 App A 12/1/99 12:32 PM Page 415

Miscellany: ZwAllocateLocallyUniqueId416

ZwAllocateLocallyUniqueId

ZwAllocateLocallyUniqueId allocates a locally unique identifier.
NTSYSAPI
NTSTATUS
NTAPI
ZwAllocateLocallyUniqueId(

OUT PLUID Luid
);

Parameters

Luid
Points to a caller-allocated buffer or variable that receives the locally unique identifier.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
AllocateLocallyUniqueId.

Remarks
None.

ZwAllocateUuids

ZwAllocateUuids allocates some of the components of a universally unique identifier.
NTSYSAPI
NTSTATUS
NTAPI
ZwAllocateUuids(

OUT PLARGE_INTEGER UuidLastTimeAllocated,
OUT PULONG UuidDeltaTime,
OUT PULONG UuidSequenceNumber,
OUT PUCHAR UuidSeed
);

Parameters

UuidLastTimeAllocated
Points to a variable that receives the time when a Uuid was last allocated.

UuidDeltaTime
Points to a variable that receives the time since a Uuid was last allocated.

UuidSequenceNumber
Points to a variable that receives the Uuid allocation sequence number.

1996 App A 12/1/99 12:32 PM Page 416

Miscellany: ZwSetUuidSeed 417

UuidSeed
Points to a variable that receives the six bytes of Uuid seed.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
UuidCreate.

Remarks
The Windows NT 4.0 version of ZwAllocateUuids does not have a UuidSeed
parameter.

ZwSetUuidSeed

ZwSetUuidSeed sets the universally unique identifier seed.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetUuidSeed(

IN PUCHAR UuidSeed
);

Parameters

UuidSeed
Points to a caller-allocated buffer or variable that contains six bytes of seed.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions
None.

Remarks
The routine ZwSetUuidSeed is only present in Windows 2000.

The UuidSeed is normally the hardware address of a network interface card.

The token of the calling thread must have an AuthenticationId of SYSTEM_LUID.

1996 App A 12/1/99 12:32 PM Page 417

Miscellany: ZwRaiseHardError418

ZwRaiseHardError

ZwRaiseHardError displays a message box containing an error message.
NTSYSAPI
NTSTATUS
NTAPI
ZwRaiseHardError(

IN NTSTATUS Status,
IN ULONG NumberOfArguments,
IN ULONG StringArgumentsMask,
IN PULONG Arguments,
IN HARDERROR_RESPONSE_OPTION ResponseOption,
OUT PHARDERROR_RESPONSE Response
);

Parameters

Status
The error status that is to be raised.

NumberOfArguments
The number of substitution directives in the string associated with the error status.

StringArgumentMask
Specifies which of the substitution directives indicate a string substitution.

Arguments
Points to an array of substitution values; the values are either ULONGs or
PUNICODE_STRINGs.

ResponseOption
Specifies the type of the message box. Permitted values are drawn from the enumera-
tion HARDERROR_RESPONSE_OPTION:

typedef enum _HARDERROR_RESPONSE_OPTION {
OptionAbortRetryIgnore,
OptionOk,
OptionOkCancel,
OptionRetryCancel,
OptionYesNo,
OptionYesNoCancel,
OptionShutdownSystem

} HARDERROR_RESPONSE_OPTION, *PHARDERROR_RESPONSE_OPTION;

Response
Points to a variable that receives the result of the user interaction with the message
box. Possible values received are drawn from the enumeration HARDERROR_RESPONSE:

typedef enum _HARDERROR_RESPONSE {
ResponseReturnToCaller,
ResponseNotHandled,
ResponseAbort,
ResponseCancel,
ResponseIgnore,
ResponseNo,

1996 App A 12/1/99 12:32 PM Page 418

Miscellany: ZwSetDefaultHardErrorPort 419

ResponseOk,
ResponseRetry,
ResponseYes

} HARDERROR_RESPONSE, *PHARDERROR_RESPONSE;

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
SeShutdownPrivilege is required to use the option OptionShutdownSystem.

The information on the number and type of arguments is needed to correctly pack
the arguments into a message to be sent to the default hard error port.The recipient of
the message uses the Status parameter to select a format string and then inserts the
arguments (which should match the directives in the string).

An example of the use of ZwRaiseHardError is:
UNICODE_STRING s = {16, 18, L”Recalled”};
ULONG x, args[] = {0x11111111, 0x22222222, ULONG(&s)};

ZwRaiseHardError(STATUS_ACCESS_VIOLATION, 3, 4, args, MB_OKCANCEL, &x);

ZwSetDefaultHardErrorPort

ZwSetDefaultHardErrorPort sets the default hard error port.
NTSYSAPI
NTSTATUS
NTAPI
ZwSetDefaultHardErrorPort(

IN HANDLE PortHandle

);

Parameters

PortHandle
A handle to a port.The handle need not grant any specific access.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions
None.

Remarks
SeTcbPrivilege is required to set the default hard error port.

1996 App A 12/1/99 12:32 PM Page 419

Miscellany: ZwSetDefaultHardErrorPort420

ZwSetDefaultHardErrorPort sets the system wide port to which “Hard Error”
messages will be sent. Normally csrss creates the hard error port. ZwRaiseHardError
allows kernel mode components to display a message box and receive a result.

ZwDisplayString

ZwDisplayString displays a string.
NTSYSAPI
NTSTATUS
NTAPI
ZwDisplayString(

IN PUNICODE_STRING String
);

Parameters

String
Specifies a string to be displayed.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions
None.

Remarks
SeTcbPrivilege is required to display a string.

ZwDisplayString only displays the string if the HAL still owns the display (before the
display driver takes ownership) or if a crash dump is in progress.

ZwCreatePagingFile

ZwCreatePagingFile creates a paging file.
NTSYSAPI
NTSTATUS
NTAPI
ZwCreatePagingFile(

IN PUNICODE_STRING FileName,
IN PULARGE_INTEGER InitialSize,
IN PULARGE_INTEGER MaximumSize,
IN ULONG Reserved
);

Parameters

FileName
The full path in the native NT format of the paging file to create.

1996 App A 12/1/99 12:32 PM Page 420

Miscellany: ZwAddAtom 421

InitialSize
The initial size, in bytes, of the paging file.

MaximumSize
The maximum size, in bytes, to which the paging file may grow.

Reserved
Not used.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_OBJECT_NAME_INVALID, STATUS_TOO_MANY_PAGING_FILES, or
STATUS_FLOPPY_VOLUME.

Related Win32 Functions
None.

Remarks
SeCreatePagefilePrivilege is required to create a paging file.

ZwAddAtom
ZwAddAtom adds an atom to the global atom table.

NTSYSAPI
NTSTATUS
NTAPI
ZwAddAtom(

IN PWSTR String,
IN ULONG StringLength,
OUT PUSHORT Atom
);

Parameters

String
The string to add to the global atom table.

StringLength
The size in bytes of the string pointed to by String.

Atom
Points to a variable that receives the atom.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_INVALID.

1996 App A 12/1/99 12:32 PM Page 421

Miscellany: ZwAddAtom422

Related Win32 Functions
GlobalAddAtom.

Remarks
The Windows NT 4.0 version of ZwAddAtom does not have a StringLength parameter.

ZwFindAtom

ZwFindAtom searches for an atom in the global atom table.
NTSYSAPI
NTSTATUS
NTAPI
ZwFindAtom(

IN PWSTR String,
IN ULONG StringLength,
OUT PUSHORT Atom
);

Parameters

String
The string to be searched for in the global atom table.

StringLength
The size in bytes of the string pointed to by String.

Atom
Points to a variable that receives the atom.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_INVALID, or STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
GlobalFindAtom.

Remarks
The Windows NT 4.0 version of ZwFindAtom does not have a StringLength
parameter.

ZwDeleteAtom

ZwDeleteAtom deletes an atom from the global atom table.
NTSYSAPI
NTSTATUS
NTAPI
ZwDeleteAtom(

IN USHORT Atom
);

1996 App A 12/1/99 12:32 PM Page 422

Miscellany: ZwQueryInformationAtom 423

Atom
The atom that is to be deleted.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_INVALID_HANDLE.

Related Win32 Functions
GlobalDeleteAtom.

Remarks
None.

ZwQueryInformationAtom

ZwQueryInformationAtom retrieves information about an atom in the global atom
table.
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryInformationAtom(

IN USHORT Atom,
IN ATOM_INFORMATION_CLASS AtomInformationClass,
OUT PVOID AtomInformation,
IN ULONG AtomInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters

Atom
The atom that is to be queried.

AtomInformationClass
Specifies the type of atom information to be queried.The permitted values are drawn
from the enumeration ATOM_INFORMATION_CLASS, described in the following section.

AtomInformation
Points to a caller-allocated buffer or variable that receives the requested atom
information.

AtomInformationLength
The size in bytes of AtomInformation, which the caller should set according to the
given AtomInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
AtomInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

1996 App A 12/1/99 12:32 PM Page 423

Miscellany: ZwQueryInformationAtom424

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or
STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions
GlobalGetAtomName.

Remarks
None.

ATOM_INFORMATION_CLASS
typedef enum _ATOM_INFORMATION_CLASS {

AtomBasicInformation,
AtomListInformation

} ATOM_INFORMATION_CLASS;

AtomBasicInformation
typedef struct _ATOM_BASIC_INFORMATION {

USHORT ReferenceCount;
USHORT Pinned;
USHORT NameLength;
WCHAR Name[1];

} ATOM_BASIC_INFORMATION, *PATOM_BASIC_INFORMATION;

Members

ReferenceCount
The reference count of the atom.

Pinned
Specifies whether the atom is pinned or not.

NameLength
The size, in bytes, of the atom name.

Name
The name of the atom.

Remarks
None.

1996 App A 12/1/99 12:32 PM Page 424

Miscellany: ZwSetLdtEntries 425

AtomListInformation
typedef struct _ATOM_LIST_INFORMATION {

ULONG NumberOfAtoms;
ATOM Atoms[1];

} ATOM_LIST_INFORMATION, *PATOM_LIST_INFORMATION;

Members

NumberOfAtoms
The number of atoms in the global atom table.

Atoms
An array containing all the atoms in the global atom table.

Remarks
None.

ZwSetLdtEntries

ZwSetLdtEntries sets Local Descriptor Table (LDT) entries for a Virtual DOS
Machine (VDM).
NTSYSAPI
NTSTATUS
NTAPI
ZwSetLdtEntries(

IN ULONG Selector1,
IN LDT_ENTRY LdtEntry1,
IN ULONG Selector2,
IN LDT_ENTRY LdtEntry2
);

Parameters

Selector1
A local segment descriptor table entry selector.

LdtEntry1
A local segment descriptor table entry.

Selector2
A local segment descriptor table entry selector.

LdtEntry2
A local segment descriptor table entry.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_LDT_DESCRIPTOR.

1996 App A 12/1/99 12:32 PM Page 425

Miscellany: ZwSetLdtEntries426

Related Win32 Functions
None.

Remarks
None.

ZwVdmControl

ZwVdmControl performs a control operation on a VDM.
NTSYSAPI
NTSTATUS
NTAPI
ZwVdmControl(

IN ULONG ControlCode,
IN PVOID ControlData
);

Parameters

ControlCode
The control code for operation to be performed.

ControlData
Pointer to a caller-allocated buffer or variable that contains the data required to
perform the operation.

Return Value
Returns STATUS_SUCCESS or an error status.

Related Win32 Functions
None.

Remarks
None.

Unimplemented System Services

The following system services all just return STATUS_NOT_IMPLEMENTED:
ZwCreateChannel
ZwListenChannel
ZwOpenChannel
ZwReplyWaitSendChannel
ZwSendWaitReplyChannel
ZwSetContextChannel

1996 App A 12/1/99 12:32 PM Page 426

Miscellany: Unimplemented System Services 427

The following system services are only present in Windows 2000 and just return
STATUS_NOT_IMPLEMENTED on the Intel platform:

ZwAllocateVirtualMemory64
ZwFreeVirtualMemory64
ZwProtectVirtualMemory64
ZwQueryVirtualMemory64
ZwReadVirtualMemory64
ZwWriteVirtualMemory64
ZwMapViewOfVlmSection
ZwUnmapViewOfVlmSection
ZwReadFile64
ZwWriteFile64

1996 App A 12/1/99 12:32 PM Page 427

1996 App A 12/1/99 12:32 PM Page 428

B
Calling System

Services from
Kernel Mode

As was stated in the Introduction, it is in principle possible to call all of the system
services from kernel mode code running at IRQL PASSIVE_LEVEL.The documentation
of the system services in the previous chapters is valid for kernel mode applications
with the minor proviso that statements regarding the need for holding privileges can
be ignored.There is, however, a practical difficulty: ntoskrnl.exe does not export all of
the necessary entry points.

The following ZwXxx system service entry points are exported by ntoskrnl.exe in
Windows 2000:
ZwAccessCheckAndAuditAlarm ZwPowerInformation
ZwAdjustPrivilegesToken ZwPulseEvent
ZwAlertThread ZwQueryDefaultLocale
ZwAllocateVirtualMemory ZwQueryDefaultUILanguage
ZwCancelIoFile ZwQueryDirectoryFile
ZwCancelTimer ZwQueryDirectoryObject
ZwClearEvent ZwQueryEaFile
ZwClose ZwQueryInformationFile
ZwCloseObjectAuditAlarm ZwQueryInformationProcess
ZwConnectPort ZwQueryInformationToken
ZwCreateDirectoryObject ZwQueryInstallUILanguage
ZwCreateEvent ZwQueryKey
ZwCreateFile ZwQueryObject
ZwCreateKey ZwQuerySection
ZwCreateSection ZwQuerySecurityObject
ZwCreateSymbolicLinkObject ZwQuerySymbolicLinkObject
ZwCreateTimer ZwQuerySystemInformation
ZwDeleteFile ZwQueryValueKey
ZwDeleteKey ZwQueryVolumeInformationFile
ZwDeleteValueKey ZwReadFile
ZwDeviceIoControlFile ZwReplaceKey
ZwDisplayString ZwRequestWaitReplyPort
ZwDuplicateObject ZwResetEvent
ZwDuplicateToken ZwRestoreKey
ZwEnumerateKey ZwSaveKey
ZwEnumerateValueKey ZwSetDefaultLocale
ZwFlushInstructionCache ZwSetDefaultUILanguage
ZwFlushKey ZwSetEaFile
ZwFlushVirtualMemory ZwSetEvent
ZwFreeVirtualMemory ZwSetInformationFile
ZwFsControlFile ZwSetInformationObject
ZwInitiatePowerAction ZwSetInformationProcess
ZwLoadDriver ZwSetInformationThread
ZwLoadKey ZwSetSecurityObject

1996 AppB 12/1/99 12:32 PM Page 429

Calling System Services from Kernel Mode430

ZwMakeTemporaryObject ZwSetSystemInformation
ZwMapViewOfSection ZwSetSystemTime
ZwNotifyChangeKey ZwSetTimer
ZwOpenDirectoryObject ZwSetValueKey
ZwOpenEvent ZwSetVolumeInformationFile
ZwOpenFile ZwTerminateProcess
ZwOpenKey ZwUnloadDriver
ZwOpenProcess ZwUnloadKey
ZwOpenProcessToken ZwUnmapViewOfSection
ZwOpenSection ZwWaitForMultipleObjects
ZwOpenSymbolicLinkObject ZwWaitForSingleObject
ZwOpenThread ZwWriteFile
ZwOpenThreadToken ZwYieldExecution
ZwOpenTimer

The following NtXxx system service entry points are exported by ntoskrnl.exe in
Windows 2000:
NtAddAtom NtQueryEaFile
NtAdjustPrivilegesToken NtQueryInformationAtom
NtAllocateLocallyUniqueId NtQueryInformationFile
NtAllocateUuids NtQueryInformationProcess
NtAllocateVirtualMemory NtQueryInformationToken
NtClose NtQueryQuotaInformationFile
NtConnectPort NtQuerySecurityObject
NtCreateEvent NtQuerySystemInformation
NtCreateFile NtQueryVolumeInformationFile
NtCreateSection NtReadFile
NtDeleteAtom NtRequestPort
NtDeleteFile NtRequestWaitReplyPort
NtDeviceIoControlFile NtSetEaFile
NtDuplicateObject NtSetEvent
NtDuplicateToken NtSetInformationFile
NtFindAtom NtSetInformationProcess
NtFreeVirtualMemory NtSetInformationThread
NtFsControlFile NtSetQuotaInformationFile
NtLockFile NtSetSecurityObject
NtMapViewOfSection NtSetVolumeInformationFile
NtNotifyChangeDirectoryFile NtUnlockFile
NtOpenFile NtVdmControl
NtOpenProcess NtWaitForSingleObject
NtOpenProcessToken NtWriteFile
NtQueryDirectoryFile

If the system service is exported in the ZwXxx form, it can be used straightforwardly by
kernel mode code. If the service is only exported in the NtXxx form, the kernel mode
code must consider the checks performed on pointers and access to objects, as
described in the Introduction.

The following system services are not exported at all:
ZwAcceptConnectPort ZwQueryInformationThread
ZwAccessCheck ZwQueryIntervalProfile
ZwAccessCheckByType ZwQueryIoCompletion
ZwAccessCheckByTypeAndAuditAlarm ZwQueryMultipleValueKey
ZwAccessCheckByTypeResultList ZwQueryMutant
ZwAccessCheckByTypeResultListAndAuditAlarm ZwQueryPerformanceCounter
ZwAdjustGroupsToken ZwQuerySemaphore
ZwAlertResumeThread ZwQuerySystemEnvironmentValue
ZwAllocateUserPhysicalPages ZwQuerySystemTime
ZwAllocateVirtualMemory64 ZwQueryTimer
ZwAreMappedFilesTheSame ZwQueryTimerResolution
ZwAssignProcessToJobObject ZwQueryVirtualMemory

1996 AppB 12/1/99 12:32 PM Page 430

Calling System Services from Kernel Mode 431

ZwCallbackReturn ZwQueryVirtualMemory64
ZwCancelDeviceWakeupRequest ZwQueueApcThread
ZwCompleteConnectPort ZwRaiseException
ZwContinue ZwRaiseHardError
ZwCreateChannel ZwReadFile64
ZwCreateEventPair ZwReadFileScatter
ZwCreateIoCompletion ZwReadRequestData
ZwCreateJobObject ZwReadVirtualMemory
ZwCreateMailslotFile ZwReadVirtualMemory64
ZwCreateMutant ZwRegisterThreadTerminatePort
ZwCreateNamedPipeFile ZwReleaseMutant
ZwCreatePagingFile ZwReleaseSemaphore
ZwCreatePort ZwRemoveIoCompletion
ZwCreateProcess ZwReplyPort
ZwCreateProfile ZwReplyWaitReceivePort
ZwCreateSemaphore ZwReplyWaitReceivePortEx
ZwCreateThread ZwReplyWaitReplyPort
ZwCreateToken ZwReplyWaitSendChannel
ZwCreateWaitablePort ZwRequestDeviceWakeup
ZwDelayExecution ZwRequestWakeupLatency
ZwDeleteObjectAuditAlarm ZwResumeThread
ZwExtendSection ZwSaveMergedKeys
ZwFilterToken ZwSecureConnectPort
ZwFlushBuffersFile ZwSendWaitReplyChannel
ZwFlushWriteBuffer ZwSetContextChannel
ZwFreeUserPhysicalPages ZwSetContextThread
ZwFreeVirtualMemory64 ZwSetDefaultHardErrorPort
ZwGetContextThread ZwSetHighEventPair
ZwGetDevicePowerState ZwSetHighWaitLowEventPair
ZwGetPlugPlayEvent ZwSetInformationJobObject
ZwGetTickCount ZwSetInformationKey
ZwImpersonateAnonymousToken ZwSetInformationToken
ZwImpersonateClientOfPort ZwSetIntervalProfile
ZwImpersonateThread ZwSetIoCompletion
ZwInitializeRegistry ZwSetLdtEntries
ZwIsSystemResumeAutomatic ZwSetLowEventPair
ZwListenChannel ZwSetLowWaitHighEventPair
ZwListenPort ZwSetSystemEnvironmentValue
ZwLoadKey2 ZwSetSystemPowerState
ZwLockVirtualMemory ZwSetThreadExecutionState
ZwMapUserPhysicalPages ZwSetTimerResolution
ZwMapViewOfVlmSection ZwSetUuidSeed
ZwNotifyChangeMultipleKeys ZwShutdownSystem
ZwOpenChannel ZwSignalAndWaitForSingleObject
ZwOpenEventPair ZwStartProfile
ZwOpenIoCompletion ZwStopProfile
ZwOpenJobObject ZwSuspendThread
ZwOpenMutant ZwSystemDebugControl
ZwOpenObjectAuditAlarm ZwTerminateJobObject
ZwOpenSemaphore ZwTerminateThread
ZwPlugPlayControl ZwTestAlert
ZwPrivilegeCheck ZwUnlockVirtualMemory
ZwPrivilegeObjectAuditAlarm ZwUnmapViewOfVlmSection
ZwPrivilegedServiceAuditAlarm ZwWaitHighEventPair
ZwProtectVirtualMemory ZwWaitLowEventPair
ZwProtectVirtualMemory64 ZwWriteFile64
ZwQueryAttributesFile ZwWriteFileGather
ZwQueryEvent ZwWriteRequestData
ZwQueryFullAttributesFile ZwWriteVirtualMemory
ZwQueryInformationJobObject ZwWriteVirtualMemory64
ZwQueryInformationPort

1996 AppB 12/1/99 12:32 PM Page 431

Calling System Services from Kernel Mode432

For some system services, there are exported and documented kernel routines with
broadly comparable functionality; for example, KeQueryPerformanceCounter could be
used in place of ZwQueryPerformanceCounter.

The internal format of some objects (events, mutants, semaphores, timers, and files) are
defined in ntddk.h, and by combining some exported and documented object manag-
er and kernel routines, it is possible to re-implement some system services. Example
18.1 is a re-implementation of NtQueryEvent, stripped of parameter validation.

Example B.1: Re-Implementing NtQueryEvent
#include “ntdll.h”

NTSTATUS
NTAPI
MyQueryEvent(

IN HANDLE EventHandle,
IN NT::EVENT_INFORMATION_CLASS EventInformationClass,
OUT PVOID EventInformation,
IN ULONG EventInformationLength,
OUT PULONG ResultLength OPTIONAL
)

{
if (ResultLength) *ResultLength = 0;

if (EventInformationClass != NT::EventBasicInformation)
return STATUS_INVALID_INFO_CLASS;

if (EventInformationLength != sizeof (NT::EVENT_BASIC_INFORMATION))
return STATUS_INFO_LENGTH_MISMATCH;

NT::PKEVENT Event;

NTSTATUS rv = NT::ObReferenceObjectByHandle(EventHandle,
EVENT_MODIFY_STATE,
*NT::ExEventObjectType,
NT::ExGetPreviousMode(),
(PVOID*)&Event, 0);

if (NT_SUCCESS(rv)) {
NT::PEVENT_BASIC_INFORMATION(EventInformation)->EventType

= NT::EVENT_TYPE(Event->Header.Type);
NT::PEVENT_BASIC_INFORMATION(EventInformation)->SignalState

= NT::KeReadStateEvent(Event);

NT::ObDereferenceObject(Event);

if (ResultLength) *ResultLength
= sizeof (NT::EVENT_BASIC_INFORMATION);

}
return rv;

}

The origin of many common error codes can be seen in Example 18.1.
ObReferenceObjectByHandle can return the following error status codes:
STATUS_INVALID_HANDLE if EventHandle is not a valid handle,
STATUS_OBJECT_TYPE_MISMATCH if EventHandle is a valid handle but not a handle to
an event object, and STATUS_ACCESS_DENIED if the handle does not grant

1996 AppB 12/1/99 12:32 PM Page 432

Calling System Services from Kernel Mode 433

EVENT_MODIFY_STATE access and the previous mode is user mode.The parameter
validation performed on the pointer PreviousState can result in STATUS_ACCESS_VIO-
LATION or STATUS_DATATYPE_MISALIGNMENT being returned.

The example also shows that the object manager just wraps simple data structures such
as KEVENT to provide services such as naming,ACLs, reference counting, and quotas.

For the remaining inaccessible system services, there is no good solution, but one pos-
sible hack is to dynamically link to ntdll.dll, which is mapped into the address space of
every process and exports the ZwXxx entry point for every system service.The caveat
with this technique is that ntdll.dll is mapped copy on write, and so individual
processes could modify the ntdll.dll code that implements the ZwXxx stubs (but this
should not be a problem for threads running in system processes such as the system
process).

Example B.2: Dynamically Binding to ntdll.dll
#include “ntdll.h”

PVOID FindNT()
{

ULONG n;
NT::ZwQuerySystemInformation(NT::SystemModuleInformation,

&n, 0, &n);
PULONG q = PULONG(NT::ExAllocatePool(NT::PagedPool, n));
NT::ZwQuerySystemInformation(NT::SystemModuleInformation,

q, n * sizeof *q, 0);

NT::PSYSTEM_MODULE_INFORMATION p
= NT::PSYSTEM_MODULE_INFORMATION(q + 1);

PVOID ntdll = 0;

for (ULONG i = 0; i < *q; i++)
if (_stricmp(p[i].ImageName + p[i].ModuleNameOffset,

“ntdll.dll”) == 0)
ntdll = p[i].Base;

NT::ExFreePool(q);
return ntdll;

}

PVOID FindFunc(PVOID Base, PCSTR Name)
{

PIMAGE_DOS_HEADER dos = PIMAGE_DOS_HEADER(Base);
PIMAGE_NT_HEADERS nt = PIMAGE_NT_HEADERS(PCHAR(Base) + dos->e_lfanew);
PIMAGE_DATA_DIRECTORY expdir

= nt->OptionalHeader.DataDirectory + IMAGE_DIRECTORY_ENTRY_EXPORT;

ULONG size = expdir->Size;
ULONG addr = expdir->VirtualAddress;

PIMAGE_EXPORT_DIRECTORY exports
= PIMAGE_EXPORT_DIRECTORY(PCHAR(Base) + addr);

PULONG functions = PULONG(PCHAR(Base) + exports->AddressOfFunctions);
PSHORT ordinals = PSHORT(PCHAR(Base) + exports->AddressOfNameOrdinals);
PULONG names = PULONG(PCHAR(Base) + exports->AddressOfNames);

PVOID func = 0;

1996 AppB 12/1/99 12:32 PM Page 433

Calling System Services from Kernel Mode: Example B.2434

for (ULONG i = 0; i < exports->NumberOfNames; i++) {
ULONG ord = ordinals[i];

if (functions[ord] < addr || functions[ord] >= addr + size) {
if (strcmp(PSTR(PCHAR(Base) + names[i]), Name) == 0)

func = PCHAR(Base) + functions[ord];
}

}

return func;
}

VOID Unload(NT::PDRIVER_OBJECT)
{
}

typedef NTSTATUS (NTAPI *NtQueryPerformanceCounter)(PLARGE_INTEGER,
PLARGE_INTEGER);

extern “C”
NTSTATUS DriverEntry(NT::PDRIVER_OBJECT DriverObject, NT::PUNICODE_STRING)
{

LARGE_INTEGER Count, Freq;

NtQueryPerformanceCounter(FindFunc(FindNT(), “ZwQueryPerformanceCounter”))
(&Count, &Freq);

NT::DbgPrint(“Freq = %lx, Count = %lx\n”, Freq.LowPart, Count.LowPart);

if (DriverObject) DriverObject->DriverUnload = Unload;

return DriverObject ? STATUS_SUCCESS : STATUS_UNSUCCESSFUL;
}

Example B.2 first uses ZwQuerySystemInformation to obtain a list of kernel images
(which includes ntdll.dll), and it extracts the base address of ntdll.dll from this informa-
tion.The example then uses knowledge of the format of PE format images to locate
the export directory and to search it for the desired entry point.

Example B.2 can be installed as a device driver and started with ZwLoadDriver or can
be loaded directly by ZwSetSystemInformation.

1996 AppB 12/1/99 12:32 PM Page 434

C
Intel Platform-

Specific Entry Points
to Kernel Mode

On the Intel platform, a change from user mode to kernel mode can be effected
either by calling a routine via a “Call Gate” or by using software interrupts.

Windows 2000 does not use call gates, but instead reimplements much of the func-
tionality of call gates in software (such as the copying of parameters), using software
interrupts to perform the mode change.

The ability to successfully execute a software interrupt is controlled by the Descriptor
Privilege Level (DPL) of the Interrupt Descriptor Table (IDT) entry.Windows 2000
sets the DPLs on the IDT entries such that user mode code is only allowed to execute
the following software interrupts:

03 : _KiTrap03 (int3)
04 : _KiTrap04 (into)
2A : _KiGetTickCount
2B : _KiCallbackReturn
2C : _KiSetLowWaitHighThread
2D : _KiDebugService
2E : _KiSystemService

KiTrap03

KiTrap03 is the handler for the breakpoint exception generated by the instruction
int3.

It constructs an EXCEPTION_RECORD and then dispatches the exception.The
EXCEPTION_RECORD contains:

ExceptionCode = STATUS_BREAKPOINT;
ExceptionFlags = 0;
ExceptionRecord = 0;
ExceptionAddress = Eip;
NumberParameters = 3;
ExceptionParameters[0] = 0;
ExceptionParameters[1] = Ecx;
ExceptionParameters[2] = Edx;

The Ecx and Edx registers can be used to convey contextual information to an
exception-handling routine.

1996 AppC 12/2/99 9:29 AM Page 435

Intel Platform-Specific Entry Points to Kernel Mode: KiTrap04436

KiTrap04

KiTrap03 is the handler for the integer overflow exception generated by the instruc-
tion into. It dispatches the exception STATUS_INTEGER_OVERFLOW.

KiGetTickCount

KiGetTickCount is a third method of obtaining the number of milliseconds that have
elapsed since the system was booted. It is faster than calling ZwGetTickCount but
slightly slower than reading from the KUSER_SHARED_DATA page.

If KiGetTickCount is invoked from a Virtual DOS Machine, it invokes
NtSetLdtEntries instead.

KiCallbackReturn

Invoking KiCallbackReturn is effectively the same as calling ZwCallbackReturn.

KiSetLowWaitHighThread

KiSetLowWaitHighThread establishes most of the environment needed to call a system
service, but instead of actually calling a service, it just returns STATUS_NO_EVENT_PAIR.

KiDebugService

KiDebugService constructs an EXCEPTION_RECORD and then dispatches the exception.
The EXCEPTION_RECORD contains:

ExceptionCode = STATUS_BREAKPOINT;
ExceptionFlags = 0;
ExceptionRecord = 0;
ExceptionAddress = Eip;
NumberParameters = 3;
ExceptionParameters[0] = Eax;
ExceptionParameters[1] = Ecx;
ExceptionParameters[2] = Edx;

Eax is set to the debug service code drawn from the enumeration
DEBUG_SERVICE_CODE.

typedef enum _DEBUG_SERVICE_CODE {
DebugPrint = 1,
DebugPrompt,
DebugLoadImageSymbols,
DebugUnLoadImageSymbols

} DEBUG_SERVICE_CODE;

Ecx points to a STRING that contains either a string to print or the name of an image.

Edx contains or points to additional information, such as the base of an image or a
prompt reply STRING.

1996 AppC 12/2/99 9:29 AM Page 436

Intel Platform-Specific Entry Points to Kernel Mode: KiSystemService 437

When the kernel debugger is informed of a STATUS_BREAKPOINT exception, it checks
ExceptionParameters[0]. If this value is zero, the exception was caused by an int3
instruction; otherwise, the value should be one of the enumerated values in
DEBUG_SERVICE_CODE.

If no remote debugger is present, DebugPrint, DebugLoadImageSymbols, and
DebugUnLoadImageSymbols exceptions are ignored; DebugPrompt and int3 exceptions
are left to be handled by the standard exception-handling mechanisms.

KiSystemService

KiSystemService is the system service dispatcher; it is responsible for dispatching all of
the system services described in the previous chapters. KiSystemService expects to
find the system service code in the Eax register, and a pointer to the arguments of the
system service in the Edx register. It checks that the system service code specifies a
valid dispatch descriptor table and a valid entry within the table. If so, the descriptor
table specifies both the number of bytes to be copied from the memory pointed to by
Edx to the kernel stack and the address of the routine to be called (which will be one
of the NtXxx routines).

1996 AppC 12/2/99 9:29 AM Page 437

1996 AppC 12/2/99 9:29 AM Page 438

D
Exceptions and

Debugging

Exceptions can occur in both user mode and kernel mode code and can be generated
by either the processor (such as “general protection,”“divide by zero,” or debug excep-
tions) or by calling ZwRaiseException.Almost all exceptions eventually result in the
kernel mode routine KiDispatchException being called.This routine is at the heart of
the exception-handling and debugging support provided by the system, and its
pseudocode appears in Example D.1.

Example D.1: Pseudocode for KiDispatchException
enum CHANCE {

FirstChance,
LastChance

};

enum EVENT {
ExceptionEvent,
DebugEvent

};

VOID KiDispatchException(PEXCEPTION_RECORD Er, ULONG Reserved,
PKTRAP_FRAME Tf, MODE PreviousMode,
BOOLEAN SearchFrames)

{
PCR->KeExceptionDispatchCount++;

CONTEXT Context
= {CONTEXT_FULL | (PreviousMode == UserMode ? CONTEXT_DEBUG : 0)};

KeContextFromKframes(Tf, Reserved, &Context);

if (Er->ExceptionCode == STATUS_BREAKPOINT) Context.Eip—;

do {
if (PreviousMode == KernelMode) {

if (SearchFrames) {
if (KiDebugRoutine &&

KiDebugRoutine(Tf, Reserved, Er, &Context,
PreviousMode, FirstChance) != 0) break;

1996 AppD 12/1/99 12:33 PM Page 439

Exceptions and Debugging: Example D.1440

if (RtlDispatchException(Er, &Context) == 1) break;
}
if (KiDebugRoutine &&

KiDebugRoutine(Tf, Reserved, Er, &Context,
PreviousMode, LastChance) != 0) break;

}
else {

if (SearchFrames) {
if (PsGetCurrentProcess()->DebugPort == 0

|| KdIsThisAKdTrap(Tf, &Context)) {

if (KiDebugRoutine &&
KiDebugRoutine(Tf, Reserved, Er, &Context,

PreviousMode, FirstChance) != 0) break;
}
if (DbgkForwardException(Tf, DebugEvent,

FirstChance) != 0) return;

if (valid_user_mode_stack_with_enough_space) {

// copy EXCEPTION_RECORD and CONTEXT to user mode stack;

// push addresses of EXCEPTION_RECORD and CONTEXT
// on user mode stack;

Tf->Eip = KeUserExceptionDispatcher;

return;
}

}

if (DbgkForwardException(Tf, DebugEvent,
LastChance) != 0) return;

if (DbgkForwardException(Tf, ExceptionEvent,
LastChance) != 0) return;

ZwTerminateThread(NtCurrentThread(), Er->ExceptionCode);
}

KeBugCheckEx(KMODE_EXCEPTION_NOT_HANDLED, Er->ExceptionCode,
Er->ExceptionAddress, Er->ExceptionInformation[0],
Er->ExceptionInformation[1]);

} while (false);

KeContextToKframes(Tf, Reserved, &Context,
Context.ContextFlags, PreviousMode);

}

KiDebugRoutine is a pointer to a function, and normally takes one of two values,
depending on whether the system was booted with kernel mode debugging enabled
(for example, /DEBUG was specified in boot.ini).

There are two main paths through KiDispatchException that are selected according
to the previous execution mode.

1996 AppD 12/1/99 12:33 PM Page 440

Exceptions and Debugging: Example 20.2 441

If the previous mode was kernel, the following steps are taken:

• If frame-based exception-handling is allowed (SearchFrames == TRUE), the
kernel debugger is given a first chance to handle the exception.

• If the kernel debugger does not handle the exception, then
RtlDispatchException is invoked to search for and invoke a frame-based
exception handler.

• If RtlDispatchException does not find a handler prepared to handle the excep-
tion or if SearchFrames is FALSE, the kernel debugger is given a last chance to
handle the exception.

• Finally, if the exception has still not been handled, KeBugCheckEx is invoked to
shut down the system with the bugcheck code KMODE_EXCEPTION_NOT_HANDLED.

If the previous mode was user, the following steps are taken:

• If frame-based exception-handling is allowed (SearchFrames == TRUE) and if the
process is not being debugged by a user mode debugger (DebugPort == 0), the
kernel debugger is given a first chance to handle the exception; otherwise, a
description of the exception is forwarded to the user mode debugger via the LPC
mechanism.

• If the exception is not handled by a debugger and the user mode stack appears to
be still valid, the user mode context is adjusted so that upon return to user mode,
the function KiUserExceptionDispatcher will be invoked.

• After returning to user mode, KiUserExceptionDispatcher invokes
RtlDispatchException to search for a frame-based exception handler.

• If RtlDispatchException does not find a handler prepared to handle the excep-
tion, the exception is re-signaled, specifying SearchFrames as FALSE.

• KiDispatchException is entered again and, because SearchFrames is FALSE, the
next step is to give a user mode debugger a last chance to handle the exception.

• If the debugger (if any) still does not handle the exception, a description of the
exception is forwarded to the exception port (if any) of the process.

• The recipient (if any) of the message to the exception port can still handle the
exception, but if it does not, ZwTerminateThread is called to terminate the cur-
rent thread.

• If ZwTerminateThread fails for any reason, KeBugCheckEx is invoked to shut down
the system with the bugcheck code KMODE_EXCEPTION_NOT_HANDLED.

Example D.2: Pseudocode for KiUserExceptionDispatcher
VOID KiUserExceptionDispatcher(PEXCEPTION_RECORD ExceptionRecord, PCONTEXT Context)
{

NTSTATUS rv = RtlDispatchException(ExceptionRecord, Context) == 1
? ZwContinue(Context, FALSE)
: ZwRaiseException(ExceptionRecord, Context, FALSE);

EXCEPTION_RECORD NestedExceptionRecord

1996 AppD 12/1/99 12:33 PM Page 441

Exceptions and Debugging: Example 20.2442

= {rv, EXCEPTION_NONCONTINUABLE, ExceptionRecord};

RtlRaiseException(&NestedExceptionRecord);
}

Example D.2 shows how KiUserExceptionDispatcher uses the two system services,
ZwContinue and ZwRaiseException. As mentioned previously,
KiUserExceptionDispatcher first calls RtlDispatchException to find and invoke a
frame-based exception handler.An exception handler can modify the Context structure
(which it accesses by calling GetExceptionInformation).Therefore, if
RtlDispatchException finds a handler, upon return from the handler, ZwContinue is
invoked to modify the execution context of the current thread to make it the one that
is specified by the handler. If a handler is not found, ZwRaiseException is called to
re-signal the exception. If either ZwContinue or ZwRaiseException return, a nested,
noncontinuable exception is raised.

All threads created by Win32 functions have a top-level frame-based exception
handler; the behavior of this handler can be influenced by calling the Win32 function
SetUnhandledExceptionFilter.This functionality allows a last-chance??? handler to
be defined, which handles the unhandled exceptions of all threads in a process.There
is no mechanism defined to provide a first-chance handler (which would have the
chance to handle the exceptions of all threads before searching the thread’s stack for
frame-based handlers), but by knowing how exception dispatching works, it is possible
to provide this functionality by patching the binary code of
KiUserExceptionDispatcher. (There are resource kit–like utilities that actually do
this).

The Kernel Debugger

The principal link between the kernel debugger and the kernel itself are the call-outs
to the kernel debugger (KiDebugRoutine) embedded in the kernel routine
KiDispatchException.The only other essential link is the check performed by
KeUpdateSystemTime for input from a remote debugger (for example, a Ctrl-C break-
in); if input is detected, KeUpdateSystemTime generates an exception by calling
DbgBreakPointWithStatus, which eventually results in the KiDispatchException
kernel debugger call-outs being invoked.

Other kernel components that wish to inform the kernel debugger of some event call
DebugService, which ultimately conveys the information to the kernel debugger by
raising an exception.

Example D.3: Pseudocode for DebugService
typedef enum _DEBUG_SERVICE_CODE {

DebugPrint = 1,
DebugPrompt,
DebugLoadImageSymbols,
DebugUnLoadImageSymbols

} DEBUG_SERVICE_CODE;

NTSTATUS DebugService(DEBUG_SERVICE_CODE Opcode, PSTRING String, PVOID Data)

1996 AppD 12/1/99 12:33 PM Page 442

Exceptions and Debugging: User Mode Debuggers 443

{
NTSTATUS rv;

__asm {
mov eax, Opcode
mov ecx, String
mov edx, Data
int 0x2D
int 0x03
mov rv, eax

}
return rv;

}

As was mentioned in Appendix B,“Intel Platform-Specific Entry Points to Kernel
Mode,” the instruction “int 0x2D” invokes KiDebugService, which saves the values of
selected registers in an EXCEPTION_RECORD structure and then raises a STATUS_BREAK-
POINT exception.When KiDispatchException is invoked to handle the exception and
KiDebugRoutine is called, the kernel debugger recognizes the exception as coming
from KiDebugService (because the EXCEPTION_RECORD member
ExceptionParameters[0] is non-zero) and responds accordingly.

Two kernel routines that inform the kernel debugger of events using this mechanism
are MmLoadSystemImage and MmUnloadSystemImage. (This is how the kernel debugger
learns of the loading and unloading of device drivers).

As was mentioned earlier, KiDebugService is a pointer to a function, and it normally
points at one of two routines. If kernel debugging is enabled (by specifying /DEBUG
in boot.ini, for example), KiDebugService points to KdpTrap; otherwise, it points to
KdpStub.

KdpStub checks whether the exception is a STATUS_BREAKPOINT with a recognized
DEBUG_SERVICE_CODE that can be ignored (all except DebugPrompt can be ignored)
and, if so, returns one to KiDispatchException, indicating that the exception has been
handled. KdpStub also does what is necessary to support ZwSystemDebugControl.

KdpTrap implements the full kernel debugger raising functionality and can, if necessary,
freeze the operation of the system and interact with a remote debugger via the serial
line.

User Mode Debuggers

At five points in the kernel (as described below), a check is made as to whether the
current process has a debug port; if it does, then an LPC message is constructed
describing the event that has just occurred.All threads (except the current) are frozen
and the message is sent to the debug port.When a reply is received, the frozen threads
are thawed.

The five points in the kernel at which checks are made are:

• Thread creation routine

• Thread termination routine

• Executable image-mapping routine

• Executable image-unmapping routine

• Exception dispatching routine (KiDispatchException, described earlier)

1996 AppD 12/1/99 12:33 PM Page 443

Exceptions and Debugging: DEBUG_MESSAGE444

The message sent to the debug port is a DEBUG_MESSAGE structure, which bears a
resemblance to the Win32 DEBUG_EVENT structure.

DEBUG_MESSAGE
typedef struct _DEBUG_MESSAGE {

PORT_MESSAGE PortMessage;
ULONG EventCode;
ULONG Status;
union {

struct {
EXCEPTION_RECORD ExceptionRecord;
ULONG FirstChance;

} Exception;
struct {

ULONG Reserved;
PVOID StartAddress;

} CreateThread;
struct {

ULONG Reserved;
HANDLE FileHandle;
PVOID Base;
ULONG PointerToSymbolTable;
ULONG NumberOfSymbols;
ULONG Reserved2;
PVOID EntryPoint;

} CreateProcess;
struct {

ULONG ExitCode;
} ExitThread;
struct {

ULONG ExitCode;
} ExitProcess;
struct {

HANDLE FileHandle;
PVOID Base;
ULONG PointerToSymbolTable;
ULONG NumberOfSymbols;

} LoadDll;
struct {

PVOID Base;
} UnloadDll;

} u;
} DEBUG_MESSAGE, *PDEBUG_MESSAGE;

Some of the messages include handles that are valid in the context of the debuggee.
Example 20.4 demonstrates how to implement debugger-type functionality by directly
receiving and replying to these messages.

Debug Message Routing

The debug port of Win32 processes being debugged is normally the general function
port for the Win32 subsystem process (the port named “\Windows\ApiPort”) rather
than a port created by the debugger itself.

1996 AppD 12/1/99 12:33 PM Page 444

Exceptions and Debugging: Value Added by the Routing Process 445

There are routines in ntdll.dll intended for use by environment subsystems to perform
the bulk of debug message processing. By default, these routines repackage the message
slightly and forward it to the port named “\DbgSsApiPort,” but they allow the
subsystem to customize their behavior by registering callback functions.The Win32
subsystem process (csrss.exe) does not add any significant functionality to the forward-
ing process.

The process that listens to the port named “\DbgSsApiPort” is the Session Manager
(smss.exe), which acts as a switch and monitor between applications and debuggers.
Debuggers register with the Session Manager by connecting to the port named
“\DbgUiApiPort.”

The Session Manager receives messages from the port named “\DbgSsApiPort,”
repackages their contents again (duplicating any handles into the debugger) and for-
wards the message to the debugger.

When the debugger replies to the message specifying the “continue status,” the Session
Manager forwards the reply to Win32 subsystem process, which forwards it in turn to
the debuggee.

Value Added by the Routing Process

When a variant of Example D.4 that uses the Win32 debugging API (rather than the
native API) is run, a consequence of the routing of the debug messages through vari-
ous processes is that the CPU load is roughly evenly divided between the debuggee,
the Session Manager, the Win32 subsystem, and the debugger. So it is worthwhile con-
sidering the value that each process adds.

The Win32 subsystem process does not add any significant value when debugging a
newly created process, but it does provide important functionality in support of the
Win32 DebugActiveProcess function: It fabricates process and thread creation debug
messages for the existing threads and image-mapping events for the loaded DLLs of
the debuggee.

The Session Manager ensures that the debuggee is terminated if the debugger termi-
nates.A debuggee waiting for a debugger to reply to a debug message cannot be ter-
minated, so if the debugger were to terminate and the debuggee were allowed to con-
tinue running, the next debug event to occur (as a result of thread creation, DLL load-
ing, or exception) would cause the debuggee to enter a state from which it could not
be continued or terminated.

The Session Manager also signals the availability of messages to the debugger by sig-
naling a semaphore; this allows a debugger to timeout a wait for a debug event.This
was necessary in Windows NT 4.0, because, as conventional ports are not waitable
objects, it is not possible to use ZwWaitForSingleObject to wait on them.The wait-
able ports introduced with Windows 2000 or the new ZwReplyWaitReceivePortEx
system service could also be used to tackle this problem, but in practice the Windows
NT 4.0 architecture has been retained.

1996 AppD 12/1/99 12:33 PM Page 445

Exceptions and Debugging: OutputDebugString446

OutputDebugString

OutputDebugString communicates its string to the debugger by raising an exception
with a particular code (0x40010006); if not recognized and handled by a debugger, a
frame-based exception handler is invoked, which makes the string available to debug
string monitors (such as dbmon.exe) by copying it to a file mapping and signaling an
event.

Tracing Calls to Routines Exported by DLLs

Example D.4 demonstrates the direct manipulation of the debug port of a process.The
example traces calls to the exported routines of all the DLLs that are loaded in a
process and runs in about 60 percent of the time required by a variant using the
Win32 debugging API.The level of tracing is more detailed than that produced by
utilities that patch the image export directories of the loaded DLLs, but the tracing
consumes substantially more CPU time.An application being traced runs at about one
twentieth of its normal speed.

Example D.4: A Trace Utility
#include “ntdll.h”
#include <imagehlp.h>
#include <stdlib.h>
#include <stdio.h>
#include <vector>
#include <map>

#define elements(s) (sizeof (s) / sizeof *(s))

namespace NT {
extern “C” {

typedef struct _DEBUG_MESSAGE {
PORT_MESSAGE PortMessage;
ULONG EventCode;
ULONG Status;
union {

struct {
EXCEPTION_RECORD ExceptionRecord;
ULONG FirstChance;

} Exception;
struct {

ULONG Reserved;
PVOID StartAddress;

} CreateThread;
struct {

ULONG Reserved;
HANDLE FileHandle;
PVOID Base;
ULONG PointerToSymbolTable;
ULONG NumberOfSymbols;
ULONG Reserved2;
PVOID EntryPoint;

} CreateProcess;
struct {

ULONG ExitCode;

1996 AppD 12/1/99 12:33 PM Page 446

Exceptions and Debugging: User Mode Debuggers 447

} ExitThread;
struct {

ULONG ExitCode;
} ExitProcess;
struct {

HANDLE FileHandle;
PVOID Base;
ULONG PointerToSymbolTable;
ULONG NumberOfSymbols;

} LoadDll;
struct {

PVOID Base;
} UnloadDll;

} u;
} DEBUG_MESSAGE, *PDEBUG_MESSAGE;

}
}

typedef struct _DEBUG_STATUS {
ULONG B0 : 1;
ULONG B1 : 1;
ULONG B2 : 1;
ULONG B3 : 1;
ULONG : 9;
ULONG BD : 1;
ULONG BS : 1;
ULONG BT : 1;
ULONG : 16;

} DEBUG_STATUS, *PDEBUG_STATUS;

typedef struct _DEBUG_CONTROL {
ULONG L0 : 1;
ULONG G0 : 1;
ULONG L1 : 1;
ULONG G1 : 1;
ULONG L2 : 1;
ULONG G2 : 1;
ULONG L3 : 1;
ULONG G3 : 1;
ULONG LE : 1;
ULONG GE : 1;
ULONG : 3;
ULONG GD : 1;
ULONG : 2;
ULONG RWE0 : 2;
ULONG LEN0 : 2;
ULONG RWE1 : 2;
ULONG LEN1 : 2;
ULONG RWE2 : 2;
ULONG LEN2 : 2;
ULONG RWE3 : 2;
ULONG LEN3 : 2;

} DEBUG_CONTROL, *PDEBUG_CONTROL;

struct Error {
ULONG line;
ULONG code;
Error(ULONG line, ULONG code) : line(line), code(code) {}

};

struct enter {
PCSTR name;
BYTE opcode;

1996 AppD 12/1/99 12:33 PM Page 447

Exceptions and Debugging: User Mode Debuggers448

ULONG argc;
enter() : name(0), opcode(0), argc(0) {}
enter(PCSTR n, BYTE o = 0, ULONG a = 3) : name(n), opcode(o), argc(a) {}

};

struct leave {
PVOID eip;
ULONG esp;
leave() : eip(0), esp(0) {}
leave(PVOID ip, ULONG sp) : eip(ip), esp(sp) {}

};

#pragma warning(disable:4786)

typedef std::map<ULONG, std::vector<leave>, std::less<ULONG> > leaves_t;
typedef std::map<PVOID, enter, std::less<PVOID> > enters_t;
typedef std::map<ULONG, PVOID, std::less<ULONG> > steps_t;

enters_t enters;
leaves_t leaves;
steps_t steps;
std::map<ULONG, HANDLE, std::less<ULONG> > threads;
HANDLE hProcess;
ULONG StartTime;
BOOL Discard;
const int EXECUTE = PAGE_EXECUTE | PAGE_EXECUTE_READ

| PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY;

BYTE InsertBreakPoint(PVOID addr)
{

MEMORY_BASIC_INFORMATION mbi;
ULONG rv;
BYTE op, bp = 0xcc;

rv = VirtualQueryEx(hProcess, addr, &mbi, sizeof mbi);
if (rv != sizeof mbi) return bp;

if ((mbi.Protect & EXECUTE) == 0) return bp;

rv = ReadProcessMemory(hProcess, addr, &op, sizeof op, 0);
if (rv == FALSE) return bp;

rv = WriteProcessMemory(hProcess, addr, &bp, sizeof bp, 0);
if (rv == FALSE) return bp;

return op;
}

VOID ReinsertBreakPoint(PVOID addr)
{

BYTE bp = 0xcc;

BOOL rv = WriteProcessMemory(hProcess, addr, &bp, sizeof bp, 0);
if (rv != TRUE) throw Error(__LINE__, GetLastError());

}

VOID StepBreakPoint(PCONTEXT context, ULONG tid, PVOID addr, BYTE opcode)
{

BOOL rv = WriteProcessMemory(hProcess, addr, &opcode, sizeof opcode, 0);
if (rv != TRUE) throw Error(__LINE__, GetLastError());

steps[tid] = addr;

1996 AppD 12/1/99 12:33 PM Page 448

Exceptions and Debugging: User Mode Debuggers 449

context->EFlags |= 0x100;
context->Eip -= 1;

}

ULONG ReturnBreak(PCONTEXT context, PVOID addr, ULONG tid)
{

std::vector<leave>& stack = leaves[tid];

while (!stack.empty() && stack.back().esp < context->Esp) {
stack.pop_back();
printf(“#”);

}

if (addr == 0) return 0;

stack.push_back(leave(addr, context->Esp));

PDEBUG_CONTROL dr7 = PDEBUG_CONTROL(&context->Dr7);
PDEBUG_STATUS dr6 = PDEBUG_STATUS(&context->Dr6);

context->Dr0 = ULONG(addr);
dr7->L0 = 1, dr7->RWE0 = 0, dr7->LEN0 = 0, dr6->B0 = 0;

return stack.size() - 1;
}

VOID AddFPO(PVOID base, PSTR name)
{

PIMAGE_DEBUG_INFORMATION idi
= MapDebugInformation(0, name, getenv(“_NT_SYMBOL_PATH”), 0);

if (idi == 0) return;

for (ULONG i = 0; i < idi->NumberOfFpoTableEntries; i++) {
PVOID func = PVOID(PBYTE(base) + idi->FpoTableEntries[i].ulOffStart);

enters_t::iterator entry = enters.find(func);

if (entry != enters.end())
entry->second.argc = idi->FpoTableEntries[i].cdwParams;

}

UnmapDebugInformation(idi);
}

VOID InsertBreakPoints(PVOID base)
{

IMAGE_DOS_HEADER dos;
IMAGE_NT_HEADERS nt;
BOOL rv;

rv = ReadProcessMemory(hProcess, base,
&dos, sizeof dos, 0);

if (rv != TRUE) throw Error(__LINE__, GetLastError());

rv = ReadProcessMemory(hProcess, PBYTE(base) + dos.e_lfanew,
&nt, sizeof nt, 0);

if (rv != TRUE) throw Error(__LINE__, GetLastError());

PIMAGE_DATA_DIRECTORY expdir
= nt.OptionalHeader.DataDirectory + IMAGE_DIRECTORY_ENTRY_EXPORT;

ULONG size = expdir->Size;
ULONG addr = expdir->VirtualAddress;

1996 AppD 12/1/99 12:33 PM Page 449

Exceptions and Debugging: User Mode Debuggers450

PIMAGE_EXPORT_DIRECTORY exports = PIMAGE_EXPORT_DIRECTORY(malloc(size));

rv = ReadProcessMemory(hProcess, PBYTE(base) + addr, exports, size, 0);
if (rv != TRUE) throw Error(__LINE__, GetLastError());

PULONG functions = PULONG(PBYTE(exports) - addr
+ ULONG(exports->AddressOfFunctions));

PUSHORT ordinals = PUSHORT(PBYTE(exports) - addr
+ ULONG(exports->AddressOfNameOrdinals));

PULONG fnames = PULONG(PBYTE(exports) - addr
+ ULONG(exports->AddressOfNames));

for (ULONG i = 0; i < exports->NumberOfNames; i++) {
ULONG ord = ordinals[i];

if (functions[ord] < addr || functions[ord] >= addr + size) {
PBYTE func = PBYTE(base) + functions[ord];

PSTR name = PSTR(PBYTE(exports) - addr + fnames[i]);

BYTE op = InsertBreakPoint(func);

if (enters.find(func) == enters.end())
enters[func] = enter(name, op);

}
}

AddFPO(base, PSTR(PBYTE(exports) - addr + exports->Name));
}

VOID RemoveDeadBreakPoints()
{

enters_t dead(enters);
BYTE op;

for (enters_t::iterator entry = dead.begin();
entry != dead.end(); entry++)

if (ReadProcessMemory(hProcess, entry->first,
&op, sizeof op, 0) == FALSE)

enters.erase(entry->first);
}

VOID ReportEntry(PCONTEXT context, NT::PDEBUG_MESSAGE dm)
{

ULONG stack[17];
CHAR buf[512];

PVOID addr = dm->u.Exception.ExceptionRecord.ExceptionAddress;

enter& entry = enters[addr];

PCSTR s = entry.name;

if (*s == ‘?’ && UnDecorateSymbolName(s, buf, sizeof buf - 1, 0) > 0)
s = buf;

ULONG argc = min(ULONG(elements(stack)) - 1, entry.argc);

BOOL rv = ReadProcessMemory(hProcess, PVOID(context->Esp),
stack, sizeof stack[0] * (1 + argc), 0);

ULONG now = GetTickCount() - StartTime;

1996 AppD 12/1/99 12:33 PM Page 450

Exceptions and Debugging: User Mode Debuggers 451

ULONG n = rv ? ReturnBreak(context, PVOID(stack[0]),
ULONG(dm->PortMessage.ClientId.UniqueThread))

: 0;

printf(“\n%4d.%02d %4x %*s%s(“,
now / 1000, (now % 1000) / 10,
ULONG(dm->PortMessage.ClientId.UniqueThread), n, “”, s);

if (rv == TRUE) {
switch (argc) {

case 0: break;
case 1: printf(“%x”, stack[1]); break;
case 2: printf(“%x, %x”, stack[1], stack[2]); break;
case 3: printf(“%x, %x, %x”, stack[1], stack[2], stack[3]); break;

default:
printf(“%x, %x, %x, %x”, stack[1], stack[2], stack[3], stack[4]);
for (ULONG i = 5; i <= argc; i++) printf(“, %x”, stack[i]);

}
}

printf(“)”);
}

VOID ReportExit(PCONTEXT context)
{

printf(“ -> %x”, context->Eax);
}

ULONG HandleBreakPoint(NT::PDEBUG_MESSAGE dm)
{

PVOID addr = dm->u.Exception.ExceptionRecord.ExceptionAddress;

enters_t::iterator entry = enters.find(addr);

if (entry != enters.end() && entry->second.opcode != 0xcc) {
HANDLE hThread

= threads[ULONG(dm->PortMessage.ClientId.UniqueThread)];

CONTEXT context;

context.ContextFlags = CONTEXT_DEBUG_REGISTERS | CONTEXT_CONTROL;

GetThreadContext(hThread, &context);

ReportEntry(&context, dm);

StepBreakPoint(&context, ULONG(dm->PortMessage.ClientId.UniqueThread),
addr, entry->second.opcode);

SetThreadContext(hThread, &context);
}
else {

if (entry != enters.end() && entry->second.name != 0)
printf(“\nDebug exception at %s\n”, entry->second.name);

else
printf(“\nDebug exception at %p\n”, addr);

}

return DBG_CONTINUE;
}

ULONG HandleSingleStep(NT::PDEBUG_MESSAGE dm)

1996 AppD 12/1/99 12:33 PM Page 451

Exceptions and Debugging: User Mode Debuggers452

{
CONTEXT context;

steps_t::iterator step
= steps.find(ULONG(dm->PortMessage.ClientId.UniqueThread));

if (step != steps.end()) {
if (!Discard) ReinsertBreakPoint(step->second);

steps.erase(step);

return DBG_CONTINUE;
}

PVOID eaddr = dm->u.Exception.ExceptionRecord.ExceptionAddress;

std::vector<leave>& stack
= leaves[ULONG(dm->PortMessage.ClientId.UniqueThread)];

if (!stack.empty() && stack.back().eip == eaddr) stack.pop_back();

PVOID iaddr = stack.empty() ? 0 : stack.back().eip;

HANDLE hThread = threads[ULONG(dm->PortMessage.ClientId.UniqueThread)];

context.ContextFlags
= CONTEXT_DEBUG_REGISTERS | CONTEXT_CONTROL | CONTEXT_INTEGER;

GetThreadContext(hThread, &context);

PDEBUG_CONTROL dr7 = PDEBUG_CONTROL(&context.Dr7);
PDEBUG_STATUS dr6 = PDEBUG_STATUS(&context.Dr6);

context.Dr0 = ULONG(iaddr);
dr7->L0 = 1, dr7->RWE0 = 0, dr7->LEN0 = 0, dr6->B0 = 0;

if (iaddr == eaddr) context.EFlags |= 0x100, dr7->L0 = 0;

SetThreadContext(hThread, &context);

ReportExit(&context);

return DBG_CONTINUE;
}

ULONG HandleExceptionEvent(NT::PDEBUG_MESSAGE dm)
{

switch (dm->u.Exception.ExceptionRecord.ExceptionCode) {
case EXCEPTION_BREAKPOINT:

return HandleBreakPoint(dm);

case EXCEPTION_SINGLE_STEP:
return HandleSingleStep(dm);

default:
printf(“\nException %x at %p\n”,

dm->u.Exception.ExceptionRecord.ExceptionCode,
dm->u.Exception.ExceptionRecord.ExceptionAddress);

}

return DBG_EXCEPTION_NOT_HANDLED;
}

1996 AppD 12/1/99 12:33 PM Page 452

Exceptions and Debugging: User Mode Debuggers 453

ULONG HandleCreateProcessThreadEvent(NT::PDEBUG_MESSAGE dm)
{

printf(“\nProcess %x, Thread create %x\n”,
dm->PortMessage.ClientId.UniqueProcess,
dm->PortMessage.ClientId.UniqueThread);

NT::OBJECT_ATTRIBUTES oa = {sizeof oa};
HANDLE hThread;

NT::ZwOpenThread(&hThread, THREAD_ALL_ACCESS,
&oa, &dm->PortMessage.ClientId);

threads[ULONG(dm->PortMessage.ClientId.UniqueThread)]
= hThread;

leaves[ULONG(dm->PortMessage.ClientId.UniqueThread)]
= std::vector<leave>();

return DBG_CONTINUE;
}

ULONG HandleExitThreadEvent(NT::PDEBUG_MESSAGE dm)
{

printf(“\nThread %x exit code %x\n”,
dm->PortMessage.ClientId.UniqueThread,
dm->u.ExitThread.ExitCode);

leaves.erase(ULONG(dm->PortMessage.ClientId.UniqueThread));

return DBG_CONTINUE;
}

ULONG HandleExitProcessEvent(NT::PDEBUG_MESSAGE dm)
{

printf(“\nProcess %x exit code %x\n”,
dm->PortMessage.ClientId.UniqueProcess,
dm->u.ExitProcess.ExitCode);

leaves.erase(ULONG(dm->PortMessage.ClientId.UniqueThread));

return DBG_CONTINUE;
}

ULONG HandleLoadDllEvent(NT::PDEBUG_MESSAGE dm)
{

InsertBreakPoints(dm->u.LoadDll.Base);

return DBG_CONTINUE;
}

ULONG HandleUnloadDllEvent(NT::PDEBUG_MESSAGE)
{

RemoveDeadBreakPoints();

return DBG_CONTINUE;
}

BOOL WINAPI HandlerRoutine(ULONG event)
{

if (event != CTRL_C_EVENT || Discard == TRUE)
TerminateProcess(hProcess, 0);

if (event == CTRL_C_EVENT)

1996 AppD 12/1/99 12:33 PM Page 453

Exceptions and Debugging: User Mode Debuggers454

Discard = TRUE;

return TRUE;
}

HANDLE StartDebuggee(HANDLE hPort)
{

PROCESS_INFORMATION pi;
STARTUPINFO si = {sizeof si};

PSTR cmd = strchr(GetCommandLine(), ‘ ‘) + 1;

CreateProcess(0, cmd, 0, 0, 0, CREATE_SUSPENDED, 0, 0, &si, &pi);

NT::ZwSetInformationProcess(pi.hProcess, NT::ProcessDebugPort,
&hPort, sizeof hPort);

ResumeThread(pi.hThread);
CloseHandle(pi.hThread);

return pi.hProcess;
}

int main(int argc, wchar_t *argv[])
{

if (argc == 1) return 0;

SetConsoleCtrlHandler(HandlerRoutine, TRUE);

NT::OBJECT_ATTRIBUTES oa = {sizeof oa};
HANDLE hPort;

NT::ZwCreatePort(&hPort, &oa, 0, 0x78, 0);

hProcess = StartDebuggee(hPort);

StartTime = GetTickCount();

NT::DEBUG_MESSAGE dm;

do {
NT::ZwReplyWaitReceivePort(hPort, 0, 0, &dm.PortMessage);

try {
switch (dm.EventCode + 1) {

case EXCEPTION_DEBUG_EVENT:
dm.Status = HandleExceptionEvent(&dm);
break;

case CREATE_THREAD_DEBUG_EVENT:
case CREATE_PROCESS_DEBUG_EVENT:

dm.Status = HandleCreateProcessThreadEvent(&dm);
break;

case EXIT_THREAD_DEBUG_EVENT:
dm.Status = HandleExitThreadEvent(&dm);
break;

case EXIT_PROCESS_DEBUG_EVENT:
dm.Status = HandleExitProcessEvent(&dm);
break;

1996 AppD 12/1/99 12:33 PM Page 454

Exceptions and Debugging: User Mode Debuggers 455

case LOAD_DLL_DEBUG_EVENT:
dm.Status = HandleLoadDllEvent(&dm);
break;

case UNLOAD_DLL_DEBUG_EVENT:
dm.Status = HandleUnloadDllEvent(&dm);
break;

default:
dm.Status = DBG_CONTINUE;
printf(“\nUnusual event %lx\n”, dm.EventCode);
break;

}
}
catch (Error e) {

printf(“Error %ld on line %ld\n”, e.code, e.line);

dm.EventCode = EXIT_PROCESS_DEBUG_EVENT - 1;
}

NT::ZwReplyPort(hPort, &dm.PortMessage);

} while (dm.EventCode + 1 != EXIT_PROCESS_DEBUG_EVENT);

return 0;
}

As a utility, Example D.4 is useful for understanding the relationship between Win32
functions and the native system services. By attempting to show the call nesting, this
example makes it possible to see which system services are invoked during a call to a
Win32 function.

Contrary to the advice of—“Don’t document bugs—fix them!” one known problem
with Example D.4 is that it does not suspend all the other threads in the process while
single stepping a thread over a breakpoint.This would potentially allow other threads
to call an exported function when the breakpoint instruction at its entry point is tem-
porarily removed.

1996 AppD 12/1/99 12:33 PM Page 455

1996 AppD 12/1/99 12:33 PM Page 456

E
NTFS On-Disk

Structure

One of the interesting file system control operations defined in winioctl.h is
FSCTL_GET_NTFS_FILE_RECORD, which retrieves a file record from the Master File Table
(MFT) on an NTFS volume.When calling ZwFsControlFile (or the Win32 function
DeviceIoControl) with this control code, the InputBuffer parameter points to a
NTFS_FILE_RECORD_INPUT_BUFFER structure, and the OutputBuffer parameter points to a
buffer large enough to hold a NTFS_FILE_RECORD_OUTPUT_BUFFER structure and a file
record.
typedef struct {

ULONGLONG FileReferenceNumber;
} NTFS_FILE_RECORD_INPUT_BUFFER, *PNTFS_FILE_RECORD_INPUT_BUFFER;

typedef struct {
ULONGLONG FileReferenceNumber;
ULONG FileRecordLength;
UCHAR FileRecordBuffer[1];

} NTFS_FILE_RECORD_OUTPUT_BUFFER, *PNTFS_FILE_RECORD_OUTPUT_BUFFER;

Strictly speaking, a FileReferenceNumber consists of a 48-bit index into the Master File
Table and a 16-bit sequence number that records how many times the entry in the
table has been reused, but the sequence number is ignored when using
FSCTL_GET_NTFS_FILE_RECORD.Therefore, to retrieve the file record at index 30, the
value 30 should be assigned to FileReferenceNumber. If the table entry at index 30 is
empty, FSCTL_GET_NTFS_FILE_RECORD retrieves a nearby entry that is not empty.To veri-
fy that the intended table entry has been retrieved, it is necessary to compare the low
order 48 bits of FileReferenceNumber in the output buffer with that in the input
buffer.

The remainder of this chapter describes the data structures that represent the on-
disk structure of NTFS. It includes a sample utility that interprets the data structures
to recover the data of a deleted file.The descriptions of the on-disk data structures also
serve to explain the contents of the FileRecordBuffer returned by
FSCTL_GET_NTFS_FILE_RECORD.

1996 AppE 12/1/99 12:33 PM Page 457

NTFS On-Disk Structure: NTFS_RECORD_HEADER458

NTFS_RECORD_HEADER
typedef struct {

ULONG Type;
USHORT UsaOffset;
USHORT UsaCount;
USN Usn;

} NTFS_RECORD_HEADER, *PNTFS_RECORD_HEADER;

Members

Type
The type of NTFS record.When the value of Type is considered as a sequence of four
one-byte characters, it normally spells an acronym for the type. Defined values include:

‘FILE’
‘INDX’
‘BAAD’
‘HOLE’
‘CHKD’

UsaOffset
The offset, in bytes, from the start of the structure to the Update Sequence Array.

UsaCount
The number of values in the Update Sequence Array.

Usn
The Update Sequence Number of the NTFS record.

Remarks
None.

FILE_RECORD_HEADER
typedef struct {

NTFS_RECORD_HEADER Ntfs;
USHORT SequenceNumber;
USHORT LinkCount;
USHORT AttributesOffset;
USHORT Flags; // 0x0001 = InUse, 0x0002 = Directory
ULONG BytesInUse;
ULONG BytesAllocated;
ULONGLONG BaseFileRecord;
USHORT NextAttributeNumber;

} FILE_RECORD_HEADER, *PFILE_RECORD_HEADER;

Members

Ntfs
An NTFS_RECORD_HEADER structure with a Type of ‘FILE’.

1996 AppE 12/1/99 12:33 PM Page 458

NTFS On-Disk Structure: ATTRIBUTE 459

SequenceNumber
The number of times that the MFT entry has been reused.

LinkCount
The number of directory links to the MFT entry.

AttributeOffset
The offset, in bytes, from the start of the structure to the first attribute of the MFT
entry.

Flags
A bit array of flags specifying properties of the MFT entry.The values defined include:

InUse 0x0001 // The MFT entry is in use
Directory 0x0002 // The MFT entry represents a directory

BytesInUse
The number of bytes used by the MFT entry.

BytesAllocated
The number of bytes allocated for the MFT entry.

BaseFileRecord
If the MFT entry contains attributes that overflowed a base MFT entry, this member
contains the file reference number of the base entry; otherwise, it contains zero.

NextAttributeNumber
The number that will be assigned to the next attribute added to the MFT entry.

Remarks
An entry in the MFT consists of a FILE_RECORD_HEADER followed by a sequence of
attributes.

ATTRIBUTE
typedef struct {

ATTRIBUTE_TYPE AttributeType;
ULONG Length;
BOOLEAN Nonresident;
UCHAR NameLength;
USHORT NameOffset;
USHORT Flags; // 0x0001 = Compressed
USHORT AttributeNumber;

} ATTRIBUTE, *PATTRIBUTE;

1996 AppE 12/1/99 12:33 PM Page 459

NTFS On-Disk Structure: ATTRIBUTE460

Members

AttributeType
The type of the attribute.The following types are defined:

typedef enum {
AttributeStandardInformation = 0x10,
AttributeAttributeList = 0x20,
AttributeFileName = 0x30,
AttributeObjectId = 0x40,
AttributeSecurityDescriptor = 0x50,
AttributeVolumeName = 0x60,
AttributeVolumeInformation = 0x70,
AttributeData = 0x80,
AttributeIndexRoot = 0x90,
AttributeIndexAllocation = 0xA0,
AttributeBitmap = 0xB0,
AttributeReparsePoint = 0xC0,
AttributeEAInformation = 0xD0,
AttributeEA = 0xE0,
AttributePropertySet = 0xF0,
AttributeLoggedUtilityStream = 0x100

} ATTRIBUTE_TYPE, *PATTRIBUTE_TYPE;

Length
The size, in bytes, of the resident part of the attribute.

Nonresident
Specifies, when true, that the attribute value is nonresident.

NameLength
The size, in characters, of the name (if any) of the attribute.

NameOffset
The offset, in bytes, from the start of the structure to the attribute name.The attribute
name is stored as a Unicode string.

Flags
A bit array of flags specifying properties of the attribute.The values defined include:

Compressed 0x0001 // The attribute is compressed

AttributeNumber
A numeric identifier for the instance of the attribute.

Remarks
None.

1996 AppE 12/1/99 12:33 PM Page 460

NTFS On-Disk Structure: NONRESIDENT_ATTRIBUTE 461

RESIDENT_ATTRIBUTE
typedef struct {

ATTRIBUTE Attribute;
ULONG ValueLength;
USHORT ValueOffset;
USHORT Flags; // 0x0001 = Indexed

} RESIDENT_ATTRIBUTE, *PRESIDENT_ATTRIBUTE;

Members

Attribute
An ATTRIBUTE structure containing members common to resident and nonresident
attributes.

ValueLength
The size, in bytes, of the attribute value.

ValueOffset
The offset, in bytes, from the start of the structure to the attribute value.

Flags
A bit array of flags specifying properties of the attribute.The values defined include:

Indexed 0x0001 // The attribute is indexed

Remarks
None.

NONRESIDENT_ATTRIBUTE
typedef struct {

ATTRIBUTE Attribute;
ULONGLONG LowVcn;
ULONGLONG HighVcn;
USHORT RunArrayOffset;
UCHAR CompressionUnit;
UCHAR AlignmentOrReserved[5];
ULONGLONG AllocatedSize;
ULONGLONG DataSize;
ULONGLONG InitializedSize;
ULONGLONG CompressedSize; // Only when compressed

} NONRESIDENT_ATTRIBUTE, *PNONRESIDENT_ATTRIBUTE;

Members

Attribute
An ATTRIBUTE structure containing members common to resident and nonresident
attributes.

1996 AppE 12/1/99 12:33 PM Page 461

NTFS On-Disk Structure: NONRESIDENT_ATTRIBUTE462

LowVcn
The lowest valid Virtual Cluster Number (VCN) of this portion of the attribute value.
Unless the attribute value is very fragmented (to the extent that an attribute list is
needed to describe it), there is only one portion of the attribute value, and the value of
LowVcn is zero.

HighVcn
The highest valid VCN of this portion of the attribute value.

RunArrayOffset
The offset, in bytes, from the start of the structure to the run array that contains the
mappings between VCNs and Logical Cluster Numbers (LCNs).

CompressionUnit
The compression unit for the attribute expressed as the logarithm to the base two of
the number of clusters in a compression unit. If CompressionUnit is zero, the attribute
is not compressed.

AllocatedSize
The size, in bytes, of disk space allocated to hold the attribute value.

DataSize
The size, in bytes, of the attribute value.This may be larger than the AllocatedSize if
the attribute value is compressed or sparse.

InitializedSize
The size, in bytes, of the initialized portion of the attribute value.

CompressedSize
The size, in bytes, of the attribute value after compression.This member is only present
when the attribute is compressed.

Remarks
None.

AttributeStandardInformation
typedef struct {

ULONGLONG CreationTime;
ULONGLONG ChangeTime;
ULONGLONG LastWriteTime;
ULONGLONG LastAccessTime;
ULONG FileAttributes;
ULONG AlignmentOrReservedOrUnknown[3];
ULONG QuotaId; // NTFS 3.0 only
ULONG SecurityId; // NTFS 3.0 only
ULONGLONG QuotaCharge; // NTFS 3.0 only
USN Usn; // NTFS 3.0 only

} STANDARD_INFORMATION, *PSTANDARD_INFORMATION;

1996 AppE 12/1/99 12:33 PM Page 462

NTFS On-Disk Structure: AttributeStandardInformation 463

Members

CreationTime
The time when the file was created in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

ChangeTime
The time when the file attributes were last changed in the standard time format (that
is, the number of 100-nanosecond intervals since January 1, 1601).

LastWriteTime
The time when the file was last written in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

LastAccessTime
The time when the file was last accessed in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

FileAttributes
The attributes of the file. Defined attributes include:

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_SPARSE_FILE
FILE_ATTRIBUTE_REPARSE_POINT
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
FILE_ATTRIBUTE_ENCRYPTED

AlignmentOrReservedOrUnknown
Normally contains zero. Interpretation unknown.

QuotaId
A numeric identifier of the disk quota that has been charged for the file (probably an
index into the file “\$Extend\$Quota”). If quotas are disabled, the value of QuotaId is
zero.This member is only present in NTFS 3.0. If a volume has been upgraded from
an earlier version of NTFS to version 3.0, this member is only present if the file has
been accessed since the upgrade.

SecurityId
A numeric identifier of the security descriptor that applies to the file (probably an
index into the file “\$Secure”).This member is only present in NTFS 3.0. If a volume
has been upgraded from an earlier version of NTFS to version 3.0, this member is
only present if the file has been accessed since the upgrade.

1996 AppE 12/1/99 12:33 PM Page 463

NTFS On-Disk Structure: AttributeStandardInformation464

QuotaCharge
The size, in bytes, of the charge to the quota for the file. If quotas are disabled, the
value of QuotaCharge is zero.This member is only present in NTFS 3.0. If a volume
has been upgraded from an earlier version of NTFS to version 3.0, this member is
only present if the file has been accessed since the upgrade.

Usn
The Update Sequence Number of the file. If journaling is not enabled, the value of
Usn is zero.This member is only present in NTFS 3.0. If a volume has been upgraded
from an earlier version of NTFS to version 3.0, this member is only present if the file
has been accessed since the upgrade.

Remarks
The standard information attribute is always resident.

AttributeAttributeList
typedef struct {

ATTRIBUTE_TYPE AttributeType;
USHORT Length;
UCHAR NameLength;
UCHAR NameOffset;
ULONGLONG LowVcn;
ULONGLONG FileReferenceNumber;
USHORT AttributeNumber;
USHORT AlignmentOrReserved[3];

} ATTRIBUTE_LIST, *PATTRIBUTE_LIST;

Members

AttributeType
The type of the attribute.

Length
The size, in bytes, of the attribute list entry.

NameLength
The size, in characters, of the name (if any) of the attribute.

NameOffset
The offset, in bytes, from the start of the ATTRIBUTE_LIST structure to the attribute
name.The attribute name is stored as a Unicode string.

LowVcn
The lowest valid Virtual Cluster Number (VCN) of this portion of the attribute value.

FileReferenceNumber
The file reference number of the MFT entry containing the NONRESIDENT_ATTRIBUTE
structure for this portion of the attribute value.

1996 AppE 12/1/99 12:33 PM Page 464

NTFS On-Disk Structure: AttributeFileName 465

AttributeNumber
A numeric identifier for the instance of the attribute.

Remarks
The attribute list attribute is always nonresident and consists of an array of
ATTRIBUTE_LIST structures.

An attribute list attribute is only needed when the attributes of a file do not fit in a
single MFT record. Possible reasons for overflowing a single MFT entry include:

n The file has a large numbers of alternate names (hard links)

n The attribute value is large, and the volume is badly fragmented

n The file has a complex security descriptor (does not affect NTFS 3.0)

n The file has many streams

AttributeFileName
typedef struct {

ULONGLONG DirectoryFileReferenceNumber;
ULONGLONG CreationTime; // Saved when filename last changed
ULONGLONG ChangeTime; // ditto
ULONGLONG LastWriteTime; // ditto
ULONGLONG LastAccessTime; // ditto
ULONGLONG AllocatedSize; // ditto
ULONGLONG DataSize; // ditto
ULONG FileAttributes; // ditto
ULONG AlignmentOrReserved;
UCHAR NameLength;
UCHAR NameType; // 0x01 = Long, 0x02 = Short
WCHAR Name[1];

} FILENAME_ATTRIBUTE, *PFILENAME_ATTRIBUTE;

Members

DirectoryFileReferenceNumber
The file reference number of the directory in which the filename is entered.

CreationTime
The time when the file was created in the standard time format (that is. the number of
100-nanosecond intervals since January 1, 1601).This member is only updated when
the filename changes and may differ from the field of the same name in the STAN-
DARD_INFORMATION structure.

ChangeTime
The time when the file attributes were last changed in the standard time format (that
is, the number of 100-nanosecond intervals since January 1, 1601).This member is
only updated when the filename changes and may differ from the field of the same
name in the STANDARD_INFORMATION structure.

1996 AppE 12/1/99 12:33 PM Page 465

NTFS On-Disk Structure: AttributeFileName466

LastWriteTime
The time when the file was last written in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).This member is only updated
when the filename changes and may differ from the field of the same name in the
STANDARD_INFORMATION structure.

LastAccessTime
The time when the file was last accessed in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).This member is only updated
when the filename changes and may differ from the field of the same name in the
STANDARD_INFORMATION structure.

AllocatedSize
The size, in bytes, of disk space allocated to hold the attribute value.This member is
only updated when the filename changes.

DataSize
The size, in bytes, of the attribute value.This member is only updated when the file-
name changes.

FileAttributes
The attributes of the file.This member is only updated when the filename changes and
may differ from the field of the same name in the STANDARD_INFORMATION structure.

NameLength
The size, in characters, of the filename.

NameType
The type of the name.A type of zero indicates an ordinary name, a type of one indi-
cates a long name corresponding to a short name, and a type of two indicates a short
name corresponding to a long name.

Name
The name, in Unicode, of the file.

Remarks
The filename attribute is always resident.

AttributeObjectId
typedef struct {

GUID ObjectId;
union {

struct {
GUID BirthVolumeId;
GUID BirthObjectId;
GUID DomainId;

} ;
UCHAR ExtendedInfo[48];

};
} OBJECTID_ATTRIBUTE, *POBJECTID_ATTRIBUTE;

1996 AppE 12/1/99 12:33 PM Page 466

NTFS On-Disk Structure: AttributeVolumeInformation 467

Members

ObjectId
The unique identifier assigned to the file.

BirtVolumeId
The unique identifier of the volume on which the file was first created. Need not be
present.

BirthObjectId
The unique identifier assigned to the file when it was first created. Need not be
present.

DomainId
Reserved. Need not be present.

Remarks
The object identifier attribute is always resident.

AttributeSecurityDescriptor

The security descriptor attribute is stored on disk as a standard self-relative security
descriptor.This attribute does not normally appear in MFT entries on NTFS 3.0 for-
mat volumes.

AttributeVolumeName

The volume name attribute just contains the volume label as a Unicode string.

AttributeVolumeInformation
typedef struct {

ULONG Unknown[2];
UCHAR MajorVersion;
UCHAR MinorVersion;
USHORT Flags;

} VOLUME_INFORMATION, *PVOLUME_INFORMATION;

Members

Unknown
Interpretation unknown.

MajorVersion
The major version number of the NTFS format.

MinorVersion
The minor version number of the NTFS format.

1996 AppE 12/1/99 12:33 PM Page 467

NTFS On-Disk Structure: AttributeVolumeInformation468

Flags
A bit array of flags specifying properties of the volume.The values defined include:

VolumeIsDirty 0x0001

Remarks
Windows 2000 formats new volumes as NTFS version 3.0.Windows NT 4.0 formats
new volumes as NTFS version 2.1.

AttributeData

The data attribute contains whatever data the creator of the attribute chooses.

AttributeIndexRoot
typedef struct {

ATTRIBUTE_TYPE Type;
ULONG CollationRule;
ULONG BytesPerIndexBlock;
ULONG ClustersPerIndexBlock;
DIRECTORY_INDEX DirectoryIndex;

} INDEX_ROOT, *PINDEX_ROOT;

Members

Type
The type of the attribute that is indexed.

CollationRule
A numeric identifier of the collation rule used to sort the index entries.

BytesPerIndexBlock
The number of bytes per index block.

ClustersPerIndexBlock
The number of clusters per index block.

DirectoryIndex
A DIRECTORY_INDEX structure.

Remarks
An INDEX_ROOT structure is followed by a sequence of DIRECTORY_ENTRY structures.

1996 AppE 12/1/99 12:33 PM Page 468

NTFS On-Disk Structure: DIRECTORY_INDEX 469

AttributeIndexAllocation
typedef struct {

NTFS_RECORD_HEADER Ntfs;
ULONGLONG IndexBlockVcn;
DIRECTORY_INDEX DirectoryIndex;

} INDEX_BLOCK_HEADER, *PINDEX_BLOCK_HEADER;

Members

Ntfs
An NTFS_RECORD_HEADER structure with a Type of ‘INDX’.

IndexBlockVcn
The VCN of the index block.

DirectoryIndex
A DIRECTORY_INDEX structure.

Remarks
The index allocation attribute is an array of index blocks. Each index block starts with
an INDEX_BLOCK_HEADER structure, which is followed by a sequence of DIRECTORY_ENTRY
structures.

DIRECTORY_INDEX
typedef struct {

ULONG EntriesOffset;
ULONG IndexBlockLength;
ULONG AllocatedSize;
ULONG Flags; // 0x00 = Small directory, 0x01 = Large directory

} DIRECTORY_INDEX, *PDIRECTORY_INDEX;

Members

EntriesOffset
The offset, in bytes, from the start of the structure to the first DIRECTORY_ENTRY
structure.

IndexBlockLength
The size, in bytes, of the portion of the index block that is in use.

AllocatedSize
The size, in bytes, of disk space allocated for the index block.

1996 AppE 12/1/99 12:33 PM Page 469

NTFS On-Disk Structure: DIRECTORY_INDEX470

Flags
A bit array of flags specifying properties of the index.The values defined include:

SmallDirectory 0x0000 // Directory fits in index root
LargeDirectory 0x0001 // Directory overflows index root

Remarks
None.

DIRECTORY_ENTRY
typedef struct {

ULONGLONG FileReferenceNumber;
USHORT Length;
USHORT AttributeLength;
ULONG Flags; // 0x01 = Has trailing VCN, 0x02 = Last entry
// FILENAME_ATTRIBUTE Name;
// ULONGLONG Vcn; // VCN in IndexAllocation of earlier entries

} DIRECTORY_ENTRY, *PDIRECTORY_ENTRY;

Members

FileReferenceNumber
The file reference number of the file described by the directory entry.

Length
The size, in bytes, of the directory entry.

AttributeLength
The size, in bytes, of the attribute that is indexed.

Flags
A bit array of flags specifying properties of the entry.The values defined include:

HasTrailingVcn 0x0001 // A VCN follows the indexed attribute
LastEntry 0x0002 // The last entry in an index block

Remarks
Until NTFS version 3.0, only filename attributes were indexed.

If the HasTrailingVcn flag of a DIRECTORY_ENTRY structure is set, the last eight bytes of
the directory entry contain the VCN of the index block that holds the entries imme-
diately preceding the current entry.

AttributeBitmap

The bitmap attribute contains an array of bits.The file “\$Mft” contains a bitmap
attribute that records which MFT table entries are in use, and directories normally
contain a bitmap attribute that records which index blocks contain valid entries.

1996 AppE 12/1/99 12:33 PM Page 470

NTFS On-Disk Structure: AttributeEAInformation 471

AttributeReparsePoint
typedef struct {

ULONG ReparseTag;
USHORT ReparseDataLength;
USHORT Reserved;
UCHAR ReparseData[1];

} REPARSE_POINT, *PREPARSE_POINT;

Members

ReparseTag
The reparse tag identifies the type of reparse point.The high order three bits of the tag
indicate whether the tag is owned by Microsoft, whether there is a high latency in
accessing the file data, and whether the filename is an alias for another object.

ReparseDataLength
The size, in bytes, of the reparse data in the ReparseData member.

ReparseData
The reparse data.The interpretation of the data depends upon the type of the reparse
point.

Remarks
None.

AttributeEAInformation
typedef struct {

ULONG EaLength;
ULONG EaQueryLength;

} EA_INFORMATION, *PEA_INFORMATION;

Members

EaLength
The size, in bytes, of the extended attribute information.

EaQueryLength
The size, in bytes, of the buffer needed to query the extended attributes when calling
ZwQueryEaFile.

Remarks
None.

1996 AppE 12/1/99 12:33 PM Page 471

NTFS On-Disk Structure: AttributeEA472

AttributeEA
typedef struct {

ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;
CHAR EaName[1];
// UCHAR EaData[];

} EA_ATTRIBUTE, *PEA_ATTRIBUTE;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.

Flags
A bit array of flags qualifying the extended attribute.

EaNameLength
The size, in bytes, of the extended attribute name.

EaValueLength
The size, in bytes, of the extended attribute value.

EaName
The extended attribute name.

EaData
The extended attribute data.

Remarks
None.

AttributePropertySet

Intended to support Native Structured Storage (NSS)—a feature that was removed
from NTFS 3.0 during beta testing.

AttributeLoggedUtilityStream

A logged utility stream attribute contains whatever data the creator of the attribute
chooses, but operations on the attribute are logged to the NTFS log file just like
NTFS metadata changes. It is used by the Encrypting File System (EFS).

1996 AppE 12/1/99 12:33 PM Page 472

NTFS On-Disk Structure: Special Files 473

Special Files

The first sixteen entries in the Master File Table (MFT) are reserved for special files.
NTFS 3.0 uses only the first twelve entries.

\$MFT (entry 0)
The Master File Table.The data attribute contains the MFT entries, and the bitmap
attribute records which entries are in use.

\$MFTMirr (entry 1)
A mirror (backup copy) of the first four entries of the MFT.

\$LogFile (entry 2)
The volume log file that records changes to the volume structure.

\$Volume (entry 3)
The data attribute of $Volume represents the whole volume. Opening the Win32 path-
name “\\.\C:” opens the volume file on drive C: (presuming that C: is an NTFS-
formatted volume).

The $Volume file also has volume name, volume information, and object identifier
attributes.

\$AttrDef (entry 4)
The data attribute of $AttrDef contains an array of attribute definitions.
typedef struct {

WCHAR AttributeName[64];
ULONG AttributeNumber;
ULONG Unknown[2];
ULONG Flags;
ULONGLONG MinimumSize;
ULONGLONG MaximumSize;

} ATTRIBUTE_DEFINITION, *PATTRIBUTE_DEFINITION;

\ (entry 5)
The root directory of the volume.

\$Bitmap (entry 6)
The data attribute of $Bitmap is a bitmap of the allocated clusters on the volume.

\$Boot (entry 7)
The first sector of $Boot is also the first sector of the volume. Because it is used early
in the system boot process (if the volume is bootable), space is at a premium and the
data stored in it is not aligned on natural boundaries.The format of the first sector can
be represented by a BOOT_BLOCK structure.
#pragma pack(push, 1)

typedef struct {
UCHAR Jump[3];

1996 AppE 12/1/99 12:33 PM Page 473

NTFS On-Disk Structure: Special Files474

UCHAR Format[8];
USHORT BytesPerSector;
UCHAR SectorsPerCluster;
USHORT BootSectors;
UCHAR Mbz1;
USHORT Mbz2;
USHORT Reserved1;
UCHAR MediaType;
USHORT Mbz3;
USHORT SectorsPerTrack;
USHORT NumberOfHeads;
ULONG PartitionOffset;
ULONG Reserved2[2];
ULONGLONG TotalSectors;
ULONGLONG MftStartLcn;
ULONGLONG Mft2StartLcn;
ULONG ClustersPerFileRecord;
ULONG ClustersPerIndexBlock;
ULONGLONG VolumeSerialNumber;
UCHAR Code[0x1AE];
USHORT BootSignature;

} BOOT_BLOCK, *PBOOT_BLOCK;

#pragma pack(pop)

\$BadClus (entry 8)
Bad clusters are appended to the data attribute of this file.

\$Secure (entry 9)
The data attribute of $Secure contains the shared security descriptors. $Secure also has
two indexes.

\$UpCase (entry 10)
The data attribute of $Upcase contains the uppercase equivalent of all 65536 Unicode
characters.

\$Extend (entry 11)
$Extend is a directory that holds the special files used by some of the extended func-
tionality of NTFS 3.0.The (semi-) special files which are stored in the directory
include “$ObjId,” “$Quota,” “$Reparse” and “$UsnJrnl.”

Opening Special Files

Although the special files are indeed files, they cannot normally be opened by calling
ZwOpenFile or ZwCreateFile because even though the ACL on the special files grants
read access to Administrators, ntfs.sys (the NTFS file system driver) always returns
STATUS_ACCESS_DENIED.There are two variables in ntfs.sys that affect this behavior:
NtfsProtectSystemFiles and NtfsProtectSystemAttributes. By default, both of these
variables are set to TRUE.

If NtfsProtectSystemAttributes is set to FALSE (by a debugger, for example), the sys-
tem attributes (such as the standard information attribute) can be opened, using the
names of the form “filename::$STANDARD_INFORMATION.”

1996 AppE 12/1/99 12:33 PM Page 474

NTFS On-Disk Structure: Example 21.1 475

If NtfsProtectSystemFiles is set to FALSE, then the special files can be opened.There
are, however, some drawbacks associated with attempting to do this: Because many of
the special files are opened in a special way when mounting the volume, they are not
prepared to handle the IRP_MJ_READ requests resulting from a call to ZwReadFile, and
the system crashes if such a request is received.These special files can be read by map-
ping the special file with ZwCreateSection and ZwMapViewOfSection and then reading
the mapped data.A further problem is that a few of the special files are not prepared to
handle the IRP_MJ_CLEANUP request that is generated when the last handle to a file
object is closed, and the system crashes if such a request is received.The only option is
to duplicate the open handle to the special file into a process that never terminates
(such as the system process).

Recovering Data from Deleted Files

Example E.1 demonstrates how to recover data from the unnamed data attribute of a
file identified by drive letter and MFT entry index—even if the MFT entry represents
a deleted file. It can also display a list of the deleted files on the volume. MFT entries
are allocated on a first-free basis, so the entries for deleted files are normally quickly
reused.Therefore, the example is of little practical use for recovering deleted files, but
it can be used to make copies of the unnamed data attributes of the special files.

If the file to be recovered is compressed, the recovered data remains compressed and
can be decompressed by a separate utility; Example E.2 shows one way in which
this can be done.

Example E.1: Recovering Data from a File
#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include “ntfs.h”

ULONG BytesPerFileRecord;
HANDLE hVolume;
BOOT_BLOCK bootb;
PFILE_RECORD_HEADER MFT;

template <class T1, class T2> inline
T1* Padd(T1* p, T2 n) { return (T1*)((char *)p + n); }

ULONG RunLength(PUCHAR run)
{

return (*run & 0xf) + ((*run >> 4) & 0xf) + 1;
}

LONGLONG RunLCN(PUCHAR run)
{

UCHAR n1 = *run & 0xf;
UCHAR n2 = (*run >> 4) & 0xf;
LONGLONG lcn = n2 == 0 ? 0 : CHAR(run[n1 + n2]);

for (LONG i = n1 + n2 - 1; i > n1; i—)
lcn = (lcn << 8) + run[i];

return lcn;
}

1996 AppE 12/1/99 12:33 PM Page 475

NTFS On-Disk Structure: Example E.1476

ULONGLONG RunCount(PUCHAR run)
{

UCHAR n = *run & 0xf;
ULONGLONG count = 0;

for (ULONG i = n; i > 0; i—)
count = (count << 8) + run[i];

return count;
}

BOOL FindRun(PNONRESIDENT_ATTRIBUTE attr, ULONGLONG vcn,
PULONGLONG lcn, PULONGLONG count)

{
if (vcn < attr->LowVcn || vcn > attr->HighVcn) return FALSE;

*lcn = 0;
ULONGLONG base = attr->LowVcn;

for (PUCHAR run = PUCHAR(Padd(attr, attr->RunArrayOffset));
*run != 0;
run += RunLength(run)) {

*lcn += RunLCN(run);
*count = RunCount(run);

if (base <= vcn && vcn < base + *count) {
*lcn = RunLCN(run) == 0 ? 0 : *lcn + vcn - base;
*count -= ULONG(vcn - base);

return TRUE;
}
else

base += *count;
}

return FALSE;
}

PATTRIBUTE FindAttribute(PFILE_RECORD_HEADER file,
ATTRIBUTE_TYPE type, PWSTR name)

{
for (PATTRIBUTE attr = PATTRIBUTE(Padd(file, file->AttributesOffset));

attr->AttributeType != -1;
attr = Padd(attr, attr->Length)) {

if (attr->AttributeType == type) {
if (name == 0 && attr->NameLength == 0) return attr;

if (name != 0 && wcslen(name) == attr->NameLength
&& _wcsicmp(name, PWSTR(Padd(attr, attr->NameOffset))) == 0)
return attr;

}
}

return 0;
}

VOID FixupUpdateSequenceArray(PFILE_RECORD_HEADER file)
{

PUSHORT usa = PUSHORT(Padd(file, file->Ntfs.UsaOffset));
PUSHORT sector = PUSHORT(file);

1996 AppE 12/1/99 12:33 PM Page 476

NTFS On-Disk Structure: Example E.1 477

for (ULONG i = 1; i < file->Ntfs.UsaCount; i++) {
sector[255] = usa[i];
sector += 256;

}
}

VOID ReadSector(ULONGLONG sector, ULONG count, PVOID buffer)
{

ULARGE_INTEGER offset;
OVERLAPPED overlap = {0};
ULONG n;

offset.QuadPart = sector * bootb.BytesPerSector;
overlap.Offset = offset.LowPart; overlap.OffsetHigh = offset.HighPart;

ReadFile(hVolume, buffer, count * bootb.BytesPerSector, &n, &overlap);
}

VOID ReadLCN(ULONGLONG lcn, ULONG count, PVOID buffer)
{

ReadSector(lcn * bootb.SectorsPerCluster,
count * bootb.SectorsPerCluster, buffer);

}

VOID ReadExternalAttribute(PNONRESIDENT_ATTRIBUTE attr,
ULONGLONG vcn, ULONG count, PVOID buffer)

{
ULONGLONG lcn, runcount;
ULONG readcount, left;
PUCHAR bytes = PUCHAR(buffer);

for (left = count; left > 0; left -= readcount) {
FindRun(attr, vcn, &lcn, &runcount);

readcount = ULONG(min(runcount, left));

ULONG n = readcount * bootb.BytesPerSector * bootb.SectorsPerCluster;

if (lcn == 0)
memset(bytes, 0, n);

else
ReadLCN(lcn, readcount, bytes);

vcn += readcount;
bytes += n;

}
}

ULONG AttributeLength(PATTRIBUTE attr)
{

return attr->Nonresident == FALSE
? PRESIDENT_ATTRIBUTE(attr)->ValueLength
: ULONG(PNONRESIDENT_ATTRIBUTE(attr)->DataSize);

}

ULONG AttributeLengthAllocated(PATTRIBUTE attr)
{

return attr->Nonresident == FALSE
? PRESIDENT_ATTRIBUTE(attr)->ValueLength
: ULONG(PNONRESIDENT_ATTRIBUTE(attr)->AllocatedSize);

}

1996 AppE 12/1/99 12:33 PM Page 477

NTFS On-Disk Structure: Example E.1478

VOID ReadAttribute(PATTRIBUTE attr, PVOID buffer)
{

if (attr->Nonresident == FALSE) {
PRESIDENT_ATTRIBUTE rattr = PRESIDENT_ATTRIBUTE(attr);
memcpy(buffer, Padd(rattr, rattr->ValueOffset), rattr->ValueLength);

}
else {

PNONRESIDENT_ATTRIBUTE nattr = PNONRESIDENT_ATTRIBUTE(attr);
ReadExternalAttribute(nattr, 0, ULONG(nattr->HighVcn) + 1, buffer);

}
}

VOID ReadVCN(PFILE_RECORD_HEADER file, ATTRIBUTE_TYPE type,
ULONGLONG vcn, ULONG count, PVOID buffer)

{
PNONRESIDENT_ATTRIBUTE attr

= PNONRESIDENT_ATTRIBUTE(FindAttribute(file, type, 0));

if (attr == 0 || (vcn < attr->LowVcn || vcn > attr->HighVcn)) {
// Support for huge files

PATTRIBUTE attrlist = FindAttribute(file, AttributeAttributeList, 0);

DebugBreak();
}

ReadExternalAttribute(attr, vcn, count, buffer);
}

VOID ReadFileRecord(ULONG index, PFILE_RECORD_HEADER file)
{

ULONG clusters = bootb.ClustersPerFileRecord;
if (clusters > 0x80) clusters = 1;

PUCHAR p = new UCHAR[bootb.BytesPerSector
* bootb.SectorsPerCluster * clusters];

ULONGLONG vcn = ULONGLONG(index) * BytesPerFileRecord
/ bootb.BytesPerSector / bootb.SectorsPerCluster;

ReadVCN(MFT, AttributeData, vcn, clusters, p);

LONG m = (bootb.SectorsPerCluster * bootb.BytesPerSector
/ BytesPerFileRecord) - 1;

ULONG n = m > 0 ? (index & m) : 0;

memcpy(file, p + n * BytesPerFileRecord, BytesPerFileRecord);

delete [] p;

FixupUpdateSequenceArray(file);
}

VOID LoadMFT()
{

BytesPerFileRecord = bootb.ClustersPerFileRecord < 0x80
? bootb.ClustersPerFileRecord

* bootb.SectorsPerCluster
* bootb.BytesPerSector

: 1 << (0x100 - bootb.ClustersPerFileRecord);

1996 AppE 12/1/99 12:33 PM Page 478

NTFS On-Disk Structure: Example E.1 479

MFT = PFILE_RECORD_HEADER(new UCHAR[BytesPerFileRecord]);

ReadSector(bootb.MftStartLcn * bootb.SectorsPerCluster,
BytesPerFileRecord / bootb.BytesPerSector, MFT);

FixupUpdateSequenceArray(MFT);
}

BOOL bitset(PUCHAR bitmap, ULONG i)
{

return (bitmap[i >> 3] & (1 << (i & 7))) != 0;
}

VOID FindDeleted()
{

PATTRIBUTE attr = FindAttribute(MFT, AttributeBitmap, 0);
PUCHAR bitmap = new UCHAR[AttributeLengthAllocated(attr)];

ReadAttribute(attr, bitmap);

ULONG n = AttributeLength(FindAttribute(MFT, AttributeData, 0))
/ BytesPerFileRecord;

PFILE_RECORD_HEADER file
= PFILE_RECORD_HEADER(new UCHAR[BytesPerFileRecord]);

for (ULONG i = 0; i < n; i++) {
if (bitset(bitmap, i)) continue;

ReadFileRecord(i, file);

if (file->Ntfs.Type == ‘ELIF’ && (file->Flags & 1) == 0) {
attr = FindAttribute(file, AttributeFileName, 0);
if (attr == 0) continue;

PFILENAME_ATTRIBUTE name
= PFILENAME_ATTRIBUTE(Padd(attr,

PRESIDENT_ATTRIBUTE(attr)->ValueOffset));

printf(“%8lu %.*ws\n”, i, int(name->NameLength), name->Name);
}

}
}

VOID DumpData(ULONG index, PCSTR filename)
{

PFILE_RECORD_HEADER file
= PFILE_RECORD_HEADER(new UCHAR[BytesPerFileRecord]);

ULONG n;

ReadFileRecord(index, file);

if (file->Ntfs.Type != ‘ELIF’) return;

PATTRIBUTE attr = FindAttribute(file, AttributeData, 0);
if (attr == 0) return;

PUCHAR buf = new UCHAR[AttributeLengthAllocated(attr)];

ReadAttribute(attr, buf);

HANDLE hFile = CreateFile(filename, GENERIC_WRITE, 0, 0,
CREATE_ALWAYS, 0, 0);

1996 AppE 12/1/99 12:33 PM Page 479

NTFS On-Disk Structure: Example 21.1: Recovering Data from a File480

WriteFile(hFile, buf, AttributeLength(attr), &n, 0);

CloseHandle(hFile);

delete [] buf;
}

int main(int argc, char *argv[])
{

CHAR drive[] = “\\\\.\\C:”;
ULONG n;

if (argc < 2) return 0;

drive[4] = argv[1][0];

hVolume = CreateFile(drive, GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE, 0,
OPEN_EXISTING, 0, 0);

ReadFile(hVolume, &bootb, sizeof bootb, &n, 0);

LoadMFT();

if (argc == 2) FindDeleted();
if (argc == 4) DumpData(strtoul(argv[2], 0, 0), argv[3]);

CloseHandle(hVolume);

return 0;
}

Example E.2: Decompressing Recovered Data
#include <windows.h>

typedef ULONG NTSTATUS;

extern “C”
NTSTATUS
NTAPI
RtlDecompressBuffer(

USHORT CompressionFormat,
PVOID OutputBuffer,
ULONG OutputBufferLength,
PVOID InputBuffer,
ULONG InputBufferLength,
PULONG ReturnLength
);

int main(int argc, char *argv[])
{

if (argc != 3) return 0;

HANDLE hFile1 = CreateFile(argv[1], GENERIC_READ,
FILE_SHARE_READ, 0, OPEN_EXISTING, 0, 0);

HANDLE hFile2 = CreateFile(argv[2], GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ, 0, CREATE_ALWAYS, 0, 0);

1996 AppE 12/1/99 12:33 PM Page 480

NTFS On-Disk Structure: Example E.2 481

ULONG n = GetFileSize(hFile1, 0);

HANDLE hMapping1 = CreateFileMapping(hFile1, 0, PAGE_READONLY, 0, 0, 0);
HANDLE hMapping2 = CreateFileMapping(hFile2, 0, PAGE_READWRITE, 0, n, 0);

PCHAR p = PCHAR(MapViewOfFileEx(hMapping1, FILE_MAP_READ, 0, 0, 0, 0));
PCHAR q = PCHAR(MapViewOfFileEx(hMapping2, FILE_MAP_WRITE, 0, 0, 0, 0));

for (ULONG m, i = 0; i < n; i += m)
RtlDecompressBuffer(COMPRESSION_FORMAT_LZNT1,

q + i, n - i, p + i, n - i, &m);

return 0;
}

1996 AppE 12/1/99 12:33 PM Page 481

1996 AppE 12/1/99 12:33 PM Page 482

	1

 System Information

and Control
	2

 Objects, Object

Directories, and

Symbolic Links
	3

Virtual Memory
	4

 Sections
	5

 Threads
	6

 Processes
	7

Jobs
	8

 Tokens
	9

Synchronization
	10

 Time
	11

Execution Profiling
	12

Ports (Local

Procedure Calls)
	13

Files
	14

Registry Keys
	15

Security and Auditing
	16

 Plug and Play and

Power Management
	A

Miscellany
	B

Calling System

Services from

Kernel Mode
	C

 Intel Platform-

Specific Entry Points

to Kernel Mode
	D

Exceptions and

Debugging
	E

 NTFS On-Disk

Structure

